d1*(x+y)+d2*(x^2+y^2)=(x+x^2)*(y+y^2)
W coordinates with d1=d2 [database entry] make the additional assumptions
d1=d2and represent x y as w satisfying the following equations:
x+y=w
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| doubling | 1I + 2S + 1*d1 | ||
| doubling | d2overd1plus1=d2/d1+1 | 1I + 1M + 2S + 1*d2overd1plus1 | |
| diffadd | 1I + 1M + 2S + 1*d1 | ||
| diffadd | d2overd1plus1=d2/d1+1 | 1I + 3M + 1S + 1*d2overd1plus1 | |
| ladder | 2I + 1M + 3S + 2*d1 | ||
| ladder | d2overd1plus1=d2/d1+1 | 2I + 4M + 3S + 2*d2overd1plus1 | |
| scaling | 0M |
A = w1^2
B = A+w1
w3 = 1+d1/(d1+B^2)
A = w1^2
J = A^2
K = A+J
w3 = K/(d1+K+d2overd1plus1*J)
A = w2^2
B = A+w2
C = w3^2
D = C+w3
w5 = 1+d1/(d1+B*D)+w1
R = w2*w3
S = R^2
T = R*(1+w2+w3)+S
w5 = T/(d1+T+d2overd1plus1*S)+w1
A = w2^2
B = A+w2
C = w3^2
D = C+w3
w4 = 1+d1/(d1+B^2)
w5 = 1+d1/(d1+B*D)+w1
R = w2*w3
S = R^2
T = R*(1+w2+w3)+S
w5 = T/(d1+T+d2overd1plus1*S)+w1
A = w2^2
J = A^2
K = A+J
w4 = K/(d1+K+d2overd1plus1*J)
w3 = w1