NTRU Prime

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal

Technische Universiteit Eindhoven

25 August 2016
NTRU

- Security related to lattice problems; pre-version cryptanalyzed with LLL by Coppersmith and Shamir.
- System parameters \((p, q, t)\), \(p\) prime, integer \(q\), \(\gcd(p, q) = 1\).
- All computations done in ring \(R = \mathbb{Z}[x]/(x^p - 1)\).
NTRU

- Security related to lattice problems; pre-version cryptanalyzed with LLL by Coppersmith and Shamir.
- System parameters \((p, q, t)\), \(p\) prime, integer \(q\), \(\gcd(p, q) = 1\).
- All computations done in ring \(R = \mathbb{Z}[x]/(x^p - 1)\).
- Private key: \(f, g \in R\) sparse with coefficients in \((-1, 0, 1)\).
 Additional requirement: \(f\) must be invertible in \(R\) modulo \(q\).
- Public key \(h = 3g/f \mod q\).
- Can see this as lattice with basis matrix

\[
B = \begin{pmatrix}
q I_p & 0 \\
H & I_p
\end{pmatrix},
\]

where \(H\) corresponds to multiplication by \(h/3\) modulo \(x^p - 1\).
- \((g, f)\) is a short vector in the lattice as result of

\[(k, f)B = (kq + f \cdot h/3, f) = (g, f)\]

for some polynomial \(k\) (from \(fh/3 = g - kq\)).
Classic NTRU

- System parameters \((p, q, t)\), \(p\) prime, integer \(q\), \(\gcd(p, q) = 1\).
- All computations done in ring \(R = \mathbb{Z}[x]/(x^p - 1)\), some use additional reduction modulo \(q\), ring denoted by \(R_q\).
Classic NTRU

- System parameters \((p, q, t)\), \(p\) prime, integer \(q\), \(\gcd(p, q) = 1\).
- All computations done in ring \(R = \mathbb{Z}[x]/(x^p - 1)\), some use additional reduction modulo \(q\), ring denoted by \(R_q\).
- Private key: \(f, g \in R\) with coefficients in \([-1, 0, 1]\), almost all coefficients are zero (small fixed number are nonzero).
 Additional requirement: \(f\) must be invertible in \(R\) modulo \(q\) and modulo 3.
- Public key \(h = 3g/f \mod q\).
Classic NTRU

- System parameters \((p, q, t)\), \(p\) prime, integer \(q\), \(\gcd(p, q) = 1\).
- All computations done in ring \(R = \mathbb{Z}[x]/(x^p - 1)\), some use additional reduction modulo \(q\), ring denoted by \(R_q\).
- Private key: \(f, g \in R\) with coefficients in \([-1, 0, 1]\), almost all coefficients are zero (small fixed number are nonzero).
 Additional requirement: \(f\) must be invertible in \(R\) modulo \(q\) and modulo 3.
- Public key \(h = 3g/f \mod q\).
- Encryption of message \(m \in R\), coefficients in \([-1, 0, 1]\):
 Pick random, sparse \(r \in R\), same sample space as \(f\); compute:
 \[
 c = r \cdot h + m \mod q.
 \]
- Decryption of \(c \in R_q\): Compute
 \[
 a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q,
 \]
 move all coefficients to \([-q/2, q/2]\). If everything is small enough then \(a\) equals \(3rg + fm\) in \(R\) and \(m = a/f \mod 3\).
Decryption failures

Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q,$$

move all coefficients to $[-q/2, q/2]$. If everything is small enough then a equals $3rg + fm$ in R and $m = a/f \mod 3$.

Let

$$L(d, t) = \{ F \in R | F \text{ has } d \text{ coefficients equal to 1}$$

and t coefficients equal to -1, all others 0\}.

Let $f \in L(d_f, d_f - 1)$, $r \in L(d_r, d_r)$, and $g \in L(d_g, d_g)$ with $d_r < d_g$.

Then $3rg + fm$ has coefficients of size at most

$$3 \cdot 2d_r + 2d_f - 1$$

which is larger than $q/2$ for typical parameters. Such large coefficients are highly unlikely – but annoying for applications and guarantees.

Security decreases with large q; reduction is important.
Evaluation-at-1 attack

Ciphertext equals $c = rh + m$ and $r \in L(d_r, d_r)$, so $r(1) = 0$ and $g \in L(d_g, d_g)$, so $h(1) = g(1)/f(1) = 0$.

This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if $|m(1)|$ is large.

NTRU rejects extreme messages – this is dealt with by randomizing m via a padding (not mentioned so far).

For other choices of r and h, such as $L(d_r, d_r - 1)$ or such, one knows $r(1)$ and h is public, so evaluation at 1 leaks $m(1)$.
Evaluation-at-1 attack

Ciphertext equals $c = rh + m$ and $r \in L(d_r, d_r)$, so $r(1) = 0$ and $g \in L(d_g, d_g)$, so $h(1) = g(1)/f(1) = 0$.

This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if $|m(1)|$ is large.

NTRU rejects extreme messages – this is dealt with by randomizing m via a padding (not mentioned so far).

For other choices of r and h, such as $L(d_r, d_r - 1)$ or such, one knows $r(1)$ and h is public, so evaluation at 1 leaks $m(1)$.

Could also replace $x^p - 1$ by $\Phi_p = (x^p - 1)/(x - 1)$ to avoid attack.

R-LWE with Gaussian (instead of fixed-weight) noise also hides $m(1)$.
(Could still mount probabilistic attack.)
More maps on R_q

- Consider $R_q = (\mathbb{Z}/q)[x]/(x^p - 1)$.
- Can possibly get more information on m from homomorphism $\psi : R_q \rightarrow T$, for some ring T.
- Attacker applies map to $h = 3g/f$ and to $c = m + hr$ in R_q.
- Typical NTRU choice: $q = 2048$ leads to natural ring maps from $(\mathbb{Z}/2048)[x]/(x^p - 1)$ to
 - $(\mathbb{Z}/2)[x]/(x^p - 1)$,
 - $(\mathbb{Z}/4)[x]/(x^p - 1)$,
 - $(\mathbb{Z}/8)[x]/(x^p - 1)$, etc.
- Unclear whether these can be exploited to get information on m.
- Typical R-LWE case: take $(\mathbb{Z}/q)[x]/(x^n + 1)$ with n power of 2 so that $x^n + 1$ splits completely modulo q. (See Chris’ talk on Monday.)
Do these maps damage security?

Unclear.

Consider generalized setting ($\mathbb{Z}/q[x]/P$) for some polynomial P. Construct bad cases of P and q, break those systems: 2014 Eisenträger–Hallgren–Lauter, 2015 Elias–Lauter–Ozman–Stange, 2016 Chen–Lauter–Stange. Recent Castryck–Iliashenko–Vercauteren cryptanalysis of ($\mathbb{Z}/q[x]/P$) covers Elias–Lauter–Ozman–Stange cases without dependence on q, but not more recent Chen–Lauter–Stange ones. Some polynomials P are bad because they lead to very low noise in some coordinates independent of q. But for some pairs P, q the properties of P modulo q matter. (Yeah, number theory!)

Tanja Lange

NTRU Prime

https://eprint.iacr.org/2016/461
Do these maps damage security?

Unclear.

Consider generalized setting $(\mathbb{Z}/q)[x]/P$ for some polynomial P. Construct bad cases of P and q, break those systems:

- 2014 Eisenträger–Hallgren–Lauter,
- 2015 Elias–Lauter–Ozman–Stange,
- 2016 Chen–Lauter–Stange.

Recent Castryck–Iliashenko–Vercauteren cryptanalysis of $(\mathbb{Z}/q)[x]/P$ covers Elias–Lauter–Ozman–Stange cases without dependence on q, but not more recent Chen–Lauter–Stange ones.

Some polynomials P are bad because they lead to very low noise in some coordinates independent of q.

But for some pairs P, q the properties of P modulo q matter. (Yeah, number theory!)
NTRU Prime

Born out of paranoia, aka. risk management.

- Talk at Oberwolfach 2013 by Dan with rough proposal.
- Feb 2014: more detailed blogpost by Dan
 https://blog.cr.yp.to/20140213-ideal.html focusing on avenues for attacks.
- Subfield-logarithm attack strategy, sometimes much faster than Gentry–Szydlo.
NTRU Prime

Born out of paranoia, aka. risk management.

- Talk at Oberwolfach 2013 by Dan with rough proposal.
- Feb 2014: more detailed blogpost by Dan
 https://blog.cr.yp.to/20140213-ideal.html focusing on avenues for attacks.
- Subfield-logarithm attack strategy, sometimes much faster than Gentry–Szydlo.
- Now fully worked out NTRU Prime and Streamlined NTRU Prime (with parameters and implementation).

NTRU Prime

- avoids large proper subfields;
- avoids ring homomorphisms to smaller rings;
- avoids an easy to find fundamental basis of short units which is useful in Soliloquy attack (Campbell–Groves–Shepherd) and extension by Cramer–Ducas–Peikert–Regev.
NTRU Prime ring

- Differences with NTRU:
 prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial \(P \in \mathbb{Z}[x] \).

Choose prime \(q \) such that \(P \) is irreducible modulo \(q \); this means that \(q \) is inert in \(\mathbb{Z}[x]/P \) and \((\mathbb{Z}/q)[x]/P\) is a field.

Further choose \(P \) of prime degree \(p \) with large Galois group.

Specifically, set \(P = x^p - x - 1 \). This has Galois group \(S_p \) of size \(p! \).

Streamlined NTRU Prime works over the NTRU Prime field \(\mathbb{Z}/q = (\mathbb{Z}/q)[x]/(x^p - x - 1) \).
Differences with NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial $P \in \mathbb{Z}[x]$.

Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R} = \mathbb{Z}[x]/P$ and $(\mathbb{Z}/q)[x]/P$ is a field.
Differences with NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial $P \in \mathbb{Z}[x]$.

Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R} = \mathbb{Z}[x]/P$ and $(\mathbb{Z}/q)[x]/P$ is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set $P = x^p - x - 1$. This has Galois group S_p of size $p!$.

Streamlined NTRU Prime works over the NTRU Prime field

$$\mathcal{R}/q = (\mathbb{Z}/q)[x]/(x^p - x - 1).$$
NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.
NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

- Only subfields of $\mathbb{Q}[x]/P$ are itself and \mathbb{Q}. Avoids structures used by Bernstein subfield-logarithm attack and Albrecht–Bai–Ducas attack.

- Large Galois group means no easy to compute automorphisms. Roots of P live in degree-$p!$ extension. Avoids structures used by Campbell–Groves–Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.

- No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen–Lauter–Stange attack.
NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

- Only subfields of $\mathbb{Q}[x]/P$ are itself and \mathbb{Q}. Avoids structures used by Bernstein subfield-logarithm attack and Albrecht–Bai–Ducas attack.

- Large Galois group means no easy to compute automorphisms. Roots of P live in degree-$p!$ extension. Avoids structures used by Campbell–Groves–Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.

- No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies padding.
Streamlined NTRU Prime: private and public key

- System parameters \((p, q, t)\), \(p, q\) prime, \(q \geq 48t + 1 \geq 49\).
- Pick \(g\) small in \(\mathcal{R}\)

\[
g = g_0 + \cdots + g_{p-1}x^{p-1} \quad \text{with} \quad g_i \in \{-1, 0, 1\}
\]

No weight restriction on \(g\), only size restriction on coefficients; \(g\) required be invertible in \(\mathcal{R}/3\).
- Pick \(t\)-small \(f \in \mathcal{R}\)

\[
f = f_0 + \cdots + f_{p-1}x^{p-1} \quad \text{with} \quad f_i \in \{-1, 0, 1\} \quad \text{and} \quad \sum |f_i| = 2t
\]

Since \(\mathcal{R}/q\) is a field, \(f\) is invertible.
- Compute public key \(h = g/(3f)\) in \(\mathcal{R}/q\).
- Private key is \(f\) and \(1/g \in \mathcal{R}/3\).
Streamlined NTRU Prime: private and public key

- System parameters \((p, q, t), p, q\) prime, \(q \geq 48t + 1 \geq 49\).
- Pick \(g\) small in \(\mathcal{R}\)

\[g = g_0 + \cdots + g_{p-1}x^{p-1} \text{ with } g_i \in \{-1, 0, 1\} \]

No weight restriction on \(g\), only size restriction on coefficients; \(g\) required be invertible in \(\mathcal{R}/3\).
- Pick \(t\)-small \(f \in \mathcal{R}\)

\[f = f_0 + \cdots + f_{p-1}x^{p-1} \text{ with } f_i \in \{-1, 0, 1\} \text{ and } \sum |f_i| = 2t \]

Since \(\mathcal{R}/q\) is a field, \(f\) is invertible.
- Compute public key \(h = g/(3f)\) in \(\mathcal{R}/q\).
- Private key is \(f\) and \(1/g \in \mathcal{R}/3\).
- Difference with NTRU: more key options, 3 in denominator.
Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages. (Fancy name for symmetric authenticated encryption under shared key.)
Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages. (Fancy name for symmetric authenticated encryption under shared key.)

KEM:
- Alice looks up Bob’s public key \(h \).
- Picks \(t \)-small \(r \in \mathcal{R} \) (i.e., \(r_i \in \{-1, 0, 1\}, \sum |r_i| = 2t \)).
- Computes \(hr \) in \(\mathcal{R}/q \), lifts coefficients to \(\mathbb{Z} \cap [-(q - 1)/2, (q - 1)/2] \).
Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages. (Fancy name for symmetric authenticated encryption under shared key.)

KEM:
- Alice looks up Bob’s public key h.
- Picks t-small $r \in \mathcal{R}$ (i.e., $r_i \in \{-1, 0, 1\}$, $\sum |r_i| = 2t$).
- Computes hr in \mathcal{R}/q, lifts coefficients to $\mathbb{Z} \cap [-(q - 1)/2, (q - 1)/2]$.
- Rounds each coefficient to the nearest multiple of 3 to get c.
- Computes $\text{hash}(r) = (C|K)$.
- Sends $(C|c)$, uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.
Streamlined NTRU Prime: decapsulation

Bob decrypts $(C|c)$:

- Reminder $h = g/(3f)$ in \mathcal{R}/q.
- Computes $3fc = 3f(hr + m) = gr + 3fm$ in \mathcal{R}/q, lifts coefficients to $\mathbb{Z} \cap [-(q-1)/2, (q-1)/2]$.
- Reduces the coefficients modulo 3 to get $a = gr \in \mathcal{R}/3$.
- Computes $r' = a/g \in \mathcal{R}/3$, lifts r' to \mathcal{R}.
- Computes $\text{hash}(r') = (C'|K')$ and c' as rounding of hr'.
- Verifies that $c' = c$ and $C' = C$.

If all checks verify, $K = K'$ is the session key between Alice and Bob and can be used in a data encapsulation mechanism (DEM).

Choosing $q \geq 48t + 1$ means no decryption failures, so $r = r'$ and verification works unless $(C|c)$ was incorrectly generated or tempered with.
Streamlined NTRU Prime Security

Short recap:

<table>
<thead>
<tr>
<th></th>
<th>NTRU</th>
<th>R-LWE</th>
<th>NTRU Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial P</td>
<td>$x^p - 1$</td>
<td>$x^p + 1$</td>
<td>$x^p - x - 1$</td>
</tr>
<tr>
<td>Degree p</td>
<td>prime</td>
<td>power of 2</td>
<td>prime</td>
</tr>
<tr>
<td>Modulus q</td>
<td>2^d</td>
<td>prime</td>
<td>prime</td>
</tr>
<tr>
<td># factors of P in \mathcal{R}/q</td>
<td>> 1</td>
<td>p</td>
<td>1</td>
</tr>
<tr>
<td># proper subfields</td>
<td>> 1</td>
<td>many</td>
<td>1</td>
</tr>
<tr>
<td>Every m encryptable</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>No decryption failures</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>
Streamlined NTRU Prime Security

- Short recap:

<table>
<thead>
<tr>
<th></th>
<th>NTRU</th>
<th>R-LWE</th>
<th>NTRU Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial P</td>
<td>$x^p - 1$</td>
<td>$x^p + 1$</td>
<td>$x^p - x - 1$</td>
</tr>
<tr>
<td>Degree p</td>
<td>prime</td>
<td>power of 2</td>
<td>prime</td>
</tr>
<tr>
<td>Modulus q</td>
<td>2^d</td>
<td>prime</td>
<td>prime</td>
</tr>
<tr>
<td># factors of P in \mathcal{R}/q</td>
<td>> 1</td>
<td>p</td>
<td>1</td>
</tr>
<tr>
<td># proper subfields</td>
<td>> 1</td>
<td>many</td>
<td>1</td>
</tr>
<tr>
<td>Every m encryptable</td>
<td>\times</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>No decryption failures</td>
<td>\times</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

- Because of the last 2 \checkmark’s the analysis is simpler than that of NTRU.
- We investigated security against the strongest known attacks; meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, and lattice sieving.
Odlyzko’s meet-in-the-middle attack on NTRU

- Christine’s talk gives full explanation and new memory reduction.
- Idea: split the possibilities for f in two parts

\[h = (f_1 + f_2)^{-1} g \]
\[f_1 \cdot h = g - f_2 \cdot h. \]

- If there was no g: collision search in $f_1 \cdot h$ and $-f_2 \cdot h$
Odlyzko’s meet-in-the-middle attack on NTRU

- Christine’s talk gives full explanation and new memory reduction.
- Idea: split the possibilities for \(f \) in two parts

\[
h = (f_1 + f_2)^{-1}g \\
f_1 \cdot h = g - f_2 \cdot h.
\]

- If there was no \(g \): collision search in \(f_1 \cdot h \) and \(-f_2 \cdot h \)
- Solution: look for collisions in \(c(f_1 \cdot h) \) and \(c(-f_2 \cdot h) \) with

\[
c(a_0 + a_1 x + \cdots + a_{p-1} x^{p-1}) = (1(a_0 > 0), \ldots, 1(a_{p-1} > 0))
\]

using that \(g \) is small and thus \(+g \) often does not change the sign.
- If \(c(f_1 \cdot h) = c(-f_2 \cdot h) \) check whether \(h(f_1 + f_2) \) is in \(L(d_g, d_g) \).
- Basically runs in squareroot of size of search space.
In NTRU, $x^i f$ is simply a rotation of f, so it has the same coefficients, just at different positions. This means, $x^i f$ also gives a solution in the mitm attack: $hx^i f = x^i g$ has same sparsity etc., increasing the number of targets. Decryption using $x^i f$ works the same as with f for NTRU, so each target is valid.
Attackable rotations

- In NTRU, $x^i f$ is simply a rotation of f, so it has the same coefficients, just at different positions. This means, $x^i f$ also gives a solution in the mitm attack: $hx^i f = x^i g$ has same sparsity etc., increasing the number of targets.
 Decryption using $x^i f$ works the same as with f for NTRU, so each target is valid.
- In NTRU Prime $P = x^p - x - 1$, so reduction modulo P changes density and weight, e.g.

 $$(x^4 - x^2 + 1) \cdot x \equiv (x + 1) - x^3 + x = x^3 + 2x + 1 \mod (x^5 - x - 1).$$

- For small i up to $p - 1 - \deg(f)$ have shifted (valid) target.
- Very unlikely that any $x^i f$ for large i produces viable keys; first reduction occurs on average at $i = p/(2t)$.
Security against Odlyzko’s meet-in-the-middle attack

- Number of choices for f is

$$\binom{p}{2t}2^{2t}$$

because f is t-small, signs of those $2t$ coefficients are random.
Security against Odlyzko’s meet-in-the-middle attack

- Number of choices for f is
 \[
 \binom{p}{2t} 2^{2t}
 \]
 because f is t-small, signs of those $2t$ coefficients are random.

- We (over-)estimate number of viable rotations by $p - t$.

- Running time / memory mitm against Streamlined NTRU Prime

 \[
 L = \frac{\sqrt{\binom{p}{2t} 2^{2t}}}{\sqrt{2(p - t)}}.
 \]
Security against Odlyzko’s meet-in-the-middle attack

- Number of choices for f is

$$\left(\frac{p}{2t} \right) 2^{2t}$$

because f is t-small, signs of those $2t$ coefficients are random.

- We (over-)estimate number of viable rotations by $p - t$.

- Running time / memory mitm against Streamlined NTRU Prime

$$L = \frac{\sqrt{\left(\frac{p}{2t} \right) 2^{2t}}}{\sqrt{2(p - t)}}.$$

- Memory requirement can be reduced by using Christine’s talk.
Security against lattice sieving

Lattice attack setup is same as for NTRU.
- Recall $h = g/(3f)$ in \mathcal{R}/q.
- This implies that for $k \in \mathcal{R}$: $f \cdot 3h + k \cdot q = g$.
- Streamlined NTRU Prime lattice

$$(k \ f) \begin{pmatrix} qI & 0 \\ H & I \end{pmatrix} = (g \ f).$$
Security against lattice sieving

Lattice attack setup is same as for NTRU.

- Recall $h = g/(3f)$ in \mathcal{R}/q.
- This implies that for $k \in \mathcal{R}$: $f \cdot 3h + k \cdot q = g$.
- Streamlined NTRU Prime lattice

\[
\begin{pmatrix}
k \\
f
\end{pmatrix}
\begin{pmatrix}
q \\
0 \\
H \\
l
\end{pmatrix}
= \begin{pmatrix}
g \\
f
\end{pmatrix}.
\]

- Keypair (g, f) is a short vector in this lattice.
- Asymptotically sieving works in $2^{0.292 \cdot 2^p + o(p)}$ using $2^{0.208 \cdot 2^p + o(p)}$ memory.
- Crossover point between sieving and BKZ is still unclear.
- Memory is more an issue than time.
Hybrid attack

Howgrave-Graham combines lattice basis reduction and meet-in-the-middle attack.

- Idea: reduce submatrix of the Streamlined NTRU Prime lattice, then perform mitm on the rest.
Hybrid attack

Howgrave-Graham combines lattice basis reduction and meet-in-the-middle attack.

- Idea: reduce submatrix of the Streamlined NTRU Prime lattice, then perform mitm on the rest.
- Use BKZ on submatrix B to get B':

$$ C \cdot \begin{pmatrix} qI & 0 \\ H & I \end{pmatrix} = \begin{pmatrix} qI_w & 0 & 0 \\ * & B' & 0 \\ * & * & I_{w'} \end{pmatrix}. $$

- Guess options for last w' coordinates of f, using collision search (as before).
- If the Hermite factor of B' is small enough, then a rounding algorithm can detect collision of halfguesses.
Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.
Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.
- Compute BKZ costs with Chen-Nguyen simulator.
- Estimate the mitm costs by estimating the size of the projected space [HPSWZ15].
Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.
- Compute BKZ costs with Chen-Nguyen simulator.
- Estimate the mitm costs by estimating the size of the projected space [HPSWZ15].
- For detailed formulas and justifications, see our paper https://eprint.iacr.org/2016/461.
NTRU Prime Security: parameters

- Taking the attacks and desired properties into account, we get

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>t</th>
<th>Key size</th>
<th>Ciphertext Size</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>739</td>
<td>9829</td>
<td>204</td>
<td>10.3 Kb</td>
<td>9.13 Kb</td>
<td>228</td>
</tr>
</tbody>
</table>

- Security is given as classical security. Quantum computers will speed up by less than squareroot.
NTRU Prime Security: parameters

- Taking the attacks and desired properties into account, we get

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>t</td>
<td>Key size</td>
<td>Ciphertext Size</td>
<td>Security</td>
</tr>
<tr>
<td>739</td>
<td>9829</td>
<td>204</td>
<td>10.3 Kb</td>
<td>9.13 Kb</td>
<td>228</td>
</tr>
</tbody>
</table>

- Security is given as classical security. Quantum computers will speed up by less than square root.

But, is it still fast?
Polynomial Multiplication

- Main bottleneck is polynomial multiplication
- Classic choices of $x^p - 1$ and $x^n + 1$ have very fast reduction.
- NTRU uses $x^p - 1$ for p prime and $q = 2^N$.
- Most R-LWE systems use $x^n + 1$, with $n = 2^t$; q prime.
 Typical implementations use the number-theoretic transform (NTT).
 This requires q to be “NTT-friendly”, i.e., $x^n + 1$ splits into linear factors modulo q, so $q \equiv 1 \mod 2n$;
 e.g. $n = 1024$ and $q = 6 \cdot 2048 + 1$.
- Complete factorization of $x^n + 1$ modulo q is also used in search-to-decision problem reductions.
- Obvious benefit: NTT is fast.
- Not so obvious downside: NTT friendly combinations are rare – likely to overshoot security targets in some direction.
Multiplication for NTRU Prime

- How to compute efficiently in $\mathbb{Z}[x]/(x^p - x - 1)$?
- Reduction is not too bad, but no special tricks for multiplication.
- Multiplication algorithms considered:
 - Toom (3–7),
 - refined Karatsuba,
 - arbitrary degree variant of Karatsuba (3–7 levels).
Multiplication for NTRU Prime

- How to compute efficiently in $\mathbb{Z}[x]/(x^p - x - 1)$?
- Reduction is not too bad, but no special tricks for multiplication.
- Multiplication algorithms considered:
 - Toom (3–7),
 - refined Karatsuba,
 - arbitrary degree variant of Karatsuba (3–7 levels).
- Best operation count found so far for 768×768:
 - 5-level refined Karatsuba up to 128×128, combined with
 - Toom6: evaluated at $0, \pm 1, \pm 2, \pm 3, \pm 4, 5, \infty$.

Toom reconstructs a polynomial based on evaluation. We group coefficients into 6 chunks of size 128 and use Karatsuba for multiplying these smaller chunks.
Vectorization

\[f = \]

\[g = \]
Vectorization

\[f = \]
\[g = \]

- **Toom & Karatsuba**
 - cut polynomials into smaller parts; independent operations on the parts
Vectorization

\[f = \]

\[g = \]

- **Toom & Karatsuba**
 - cut polynomials into smaller parts; independent operations on the parts

- **Vectorization**
 - vectorize *across* independent multiplications
Performance

- Theoretical lower bound
 - 0.125 cycles per floating-point operation.
 - Permutations fully interleavable.

<table>
<thead>
<tr>
<th></th>
<th>mul</th>
<th>con</th>
<th>mult</th>
<th>add</th>
<th>shift</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>op.</td>
<td>42768</td>
<td>9700</td>
<td>98548</td>
<td>6385</td>
<td>157401</td>
<td></td>
</tr>
<tr>
<td>cycles</td>
<td>5346</td>
<td>1213</td>
<td>12319</td>
<td>799</td>
<td>19677</td>
<td></td>
</tr>
</tbody>
</table>

- Current implementation
 - Benchmarked performance: 51488 cycles
 - possibly due to dependency, latency, scheduling issues.
Performance

- Theoretical lower bound
 - 0.125 cycles per floating-point operation.
 - Permutations fully interleavable.

<table>
<thead>
<tr>
<th></th>
<th>mul</th>
<th>con</th>
<th>mult</th>
<th>add</th>
<th>shift</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>op.</td>
<td>42768</td>
<td>9700</td>
<td>98548</td>
<td>6385</td>
<td></td>
<td>157401</td>
</tr>
<tr>
<td>cycles</td>
<td>5346</td>
<td>1213</td>
<td>12319</td>
<td>799</td>
<td></td>
<td>19677</td>
</tr>
</tbody>
</table>

- Current implementation
 - Benchmarked performance: 51488 cycles
 - possibly due to dependency, latency, scheduling issues.
 Now even faster implementation in Microsoft Research’s Lattice Cryptography Library.
 - For NTRU Prime, further optimization in progress.
 - This level of paranoia is not too expensive (compared with unstructured LWE or Goppa-code McEliece).
Targets and history:

- 2014.10 Campbell–Groves–Shepherd describe an ideal-lattice-based system “Soliloquy”; claim quantum poly-time key recovery.
- 2010 Smart–Vercauteren system is practically identical to Soliloquy.
- 2009 Gentry system (simpler version described at STOC) has the same key-recovery problem.
- 2012 Garg–Gentry–Halevi multilinear maps have the same key-recovery problem (and many other security issues).
Parameter: $k \geq 1$.

Define $R = \mathbb{Z}[x]/\Phi_{2^k}$.

Public key: prime q and $c \in \mathbb{Z}/q$.

Secret key: short element $g \in R$ with $gR = qR + (x - c)R$; i.e., short generator of the ideal $qR + (x - c)R$.

1993 Cohen textbook “A course in computational algebraic number theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time. But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed by Biasse, not defended by CGS.

Parameter: \(k \geq 1 \).

Define \(R = \mathbb{Z}[x]/\Phi_{2^k} \).

Public key: prime \(q \) and \(c \in \mathbb{Z}/q \).

Secret key: short element \(g \in R \) with \(gR = qR + (x - c)R \); i.e., short generator of the ideal \(qR + (x - c)R \).

1993 Cohen textbook “A course in computational algebraic number theory” explains how to find generators.
Parameter: \(k \geq 1 \).

Define \(R = \mathbb{Z}[x]/\Phi_{2^k} \).

Public key: prime \(q \) and \(c \in \mathbb{Z}/q \).

Secret key: short element \(g \in R \) with \(gR = qR + (x - c)R \); i.e., short generator of the ideal \(qR + (x - c)R \).

1993 Cohen textbook “A course in computational algebraic number theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed by Biasse, not defended by CGS.
Smart–Vercauteren; Soliloquy

- Parameter: \(k \geq 1 \).
- Define \(R = \mathbb{Z}[x]/\Phi_{2^k} \).
- Public key: prime \(q \) and \(c \in \mathbb{Z}/q \).
- Secret key: short element \(g \in R \) with \(gR = qR + (x - c)R \); i.e., short generator of the ideal \(qR + (x - c)R \).
- 1993 Cohen textbook “A course in computational algebraic number theory” explains how to find generators.
- Smart–Vercauteren comment that this would take exponential time.
- But it actually takes subexponential time. Same basic idea as NFS.
- Campbell–Groves–Shepherd claim quantum poly time. Claim disputed by Biasse, not defended by CGS.
- 2016 Biasse–Song: different algorithm that takes quantum poly time, building on 2014 Eisenträger–Hallgren–Kitaev–Song.
How to get a short generator?

- Have ideal I of R.
- Want short g with $gR = I$; have g' with $g'R = I$.
- Know $g' = ug$ for some unit $u \in R^*$.
- To find u move to log lattice.

$$\log g' = \log u + \log g,$$

where \log is Dirichlet’s log map.

- Dirichlet’s unit theorem:
 $\log R^*$ is a lattice of known dimension.
- Finding $\log u$ is a closest-vector problem in this lattice.
“A simple generating set for the cyclotomic units is of course known. The image of O^\times [here R^*] under the logarithm map forms a lattice. The determinant of this lattice turns out to be much bigger than the typical loglength of a private key α [here g], so it is easy to recover the causally short private key given any generator of αO [here l], e.g. via the LLL lattice reduction algorithm.”
Automorphisms

- $x \mapsto x^3$, $x \mapsto x^5$, $x \mapsto x^7$, etc. are automorphisms of $R = \mathbb{Z}[x]/\Phi_{2^k}$.
- Easy to see $(1 - x^3)/(1 - x) \in R^*$; for inverse use expansion.
- “Cyclotomic units” are defined as
 \[R^* \cap \left\{ \pm x^{e_0} \prod_{i} (1 - x^i)^{e_i} \right\}. \]

- Weber’s conjecture:
 All elements of R^* are cyclotomic units.
- Experiments confirm that SV is quickly broken by LLL using, e.g.,
 1997 Washington textbook basis for cyclotomic units.
- Shortness of basis is critical; this was not highlighted in CGS analysis.