TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptography 1, Friday 27 January 2012

Name :

Student number:

Exercise	1	2	3	4	5	total
points						

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.

This exam consists of 5 exercises. You have from 14:00 - 17:00 to solve them. You can reach 50 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a simple, non-graphical pocket calculator. Usage of laptops and cell phones is forbidden.

1. Let \circ and \diamond be defined on $\mathbb Q$ as

$$a \circ b = a + b + 3$$
 and $a \diamond b = ab + 3(a + b) + 6$,

where addition and multiplication are the regular operations on Q.

(a) Show that (\mathbb{Q}, \circ) is a commutative group.

4 points

(b) Show that $(\mathbb{Q}, \circ, \diamond)$ is a commutative ring.

5 points

(c) Is $(\mathbb{Q}, \circ, \diamond)$ a field? Justify your answer.

2 points

- 2. This exercise is about polynomials and finite fields.
 - (a) Let $f(x) = x^4 + x^3 + x + 1$ be a polynomial in $\mathbb{F}_2[x]$. Compute

$$\gcd(x^2 + x, f(x)).$$

2 points

(b) Let $f(x) = x^4 + x^3 + x + 1$ be a polynomial in $\mathbb{F}_2[x]$. Compute

$$\gcd(x^4+x,f(x)).$$

2 points

- (c) Use the result of the previous two parts to give the factorization of f over \mathbb{F}_2 .
- 3. This exercise is about computing discrete logarithms in some groups.
 - (a) The integer p = 10037 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 1234. You observe $h_a = 2345$ and $h_b = 4567$. What is the shared key of Alice and Bob?
 - (b) The order of 5 in \mathbb{F}_{73}^* is 72. Charlie uses the subgroup generated by g=5 for cryptography. His public key is $g_c=2$. Use the Pohlig-Hellman method to compute an integer c so that $g_c \equiv g^c \mod 73$.

10 points

2WC12 - Cryptography 1 TECHNISCHE UNIVERSITEIT EINDHOVEN

4. (a) Find all affine points on the Edwards curve $x^2 + y^2 = 1 - 3x^2y^2$ over \mathbb{F}_{11} .

4 points

(b) Verify that P = (2, 2) is on the curve. Compute the order of P.

3 points

(c) Translate the curve and P to Montgomery form

$$Bv^2 = u^3 + Au^2 + u$$
.

2 points

- 5. The Hill cipher is a secret-key system based on matrices. It takes a message in the English alphabet (26 characters), translates the characters into numbers as given below, and then encrypts the message by encrypting n numbers at a time as follows:

 Let the secret key M be an $n \times n$ matrix over $\mathbb{Z}/26\mathbb{Z}$ which is invertible and let the plaintext a be the vector $(a_1, a_2, \ldots, a_n) \in (\mathbb{Z}/26\mathbb{Z})^n$. The corresponding ciphertext is $c^T = Ma^T$. To decrypt compute $a^T = M^{-1}c^T$.
 - (a) Let

$$M = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 3 & 1 \end{array}\right).$$

Encrypt the text CRY PTO

3 points

(b) Let M be a 2×2 matrix. You know that $(1,3)^T$ was encrypted as $(-9,-2)^T$ and that $(7,2)^T$ was encrypted as $(-2,9)^T$. Find the secret key M.

6 points

В С Ε F G K L Μ A D Η Ι 0 1 2 3 4 5 6 7 8 9 10 11 12 S U V X Ζ N 0 R 23 24 13 14 15 16 17 18 19 20 21 22 25