TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptography 1, Friday 27 January 2012

Name :
Student number :

Exercise	1	2	3	4	5	total
points						

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.
This exam consists of 5 exercises. You have from 14:00-17:00 to solve them. You can reach 50 points.
Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.
You are allowed to use a simple, non-graphical pocket calculator. Usage of laptops and cell phones is forbidden.

1. Let \circ and \diamond be defined on \mathbb{Q} as

$$
a \circ b=a+b+3 \text { and } a \diamond b=a b+3(a+b)+6,
$$

where addition and multiplication are the regular operations on \mathbb{Q}.
(a) Show that (\mathbb{Q}, \circ) is a commutative group.
(b) Show that $(\mathbb{Q}, \circ, \diamond)$ is a commutative ring.
(c) Is $(\mathbb{Q}, \circ, \diamond)$ a field? Justify your answer.

4 points
5 points
2 points
2. This exercise is about polynomials and finite fields.
(a) Let $f(x)=x^{4}+x^{3}+x+1$ be a polynomial in $\mathbb{F}_{2}[x]$. Compute

$$
\operatorname{gcd}\left(x^{2}+x, f(x)\right)
$$

2 points
(b) Let $f(x)=x^{4}+x^{3}+x+1$ be a polynomial in $\mathbb{F}_{2}[x]$. Compute

$$
\operatorname{gcd}\left(x^{4}+x, f(x)\right) .
$$

2 points
(c) Use the result of the previous two parts to give the factorization of f over \mathbb{F}_{2}.
3. This exercise is about computing discrete logarithms in some groups.
(a) The integer $p=10037$ is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z} / p,+)$ with generator $g=1234$. You observe $h_{a}=2345$ and $h_{b}=4567$. What is the shared key of Alice and Bob?
(b) The order of 5 in \mathbb{F}_{73}^{*} is 72 . Charlie uses the subgroup generated by $g=5$ for cryptography. His public key is $g_{c}=2$. Use the PohligHellman method to compute an integer c so that $g_{c} \equiv g^{c} \bmod 73$.

10 points
4. (a) Find all affine points on the Edwards curve $x^{2}+y^{2}=1-3 x^{2} y^{2}$ over \mathbb{F}_{11}.

4 points
(b) Verify that $P=(2,2)$ is on the curve. Compute the order of P.
(c) Translate the curve and P to Montgomery form

$$
B v^{2}=u^{3}+A u^{2}+u
$$

2 points
5. The Hill cipher is a secret-key system based on matrices. It takes a message in the English alphabet (26 characters), translates the characters into numbers as given below, and then encrypts the message by encrypting n numbers at a time as follows:
Let the secret key M be an $n \times n$ matrix over $\mathbb{Z} / 26 \mathbb{Z}$ which is invertible and let the plaintext a be the vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in(\mathbb{Z} / 26 \mathbb{Z})^{n}$. The corresponding ciphertext is $c^{T}=M a^{T}$. To decrypt compute $a^{T}=M^{-1} c^{T}$.
(a) Let

$$
M=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 3 & 2 \\
1 & 3 & 1
\end{array}\right)
$$

Encrypt the text CRY PTO
(b) Let M be a 2×2 matrix. You know that $(1,3)^{T}$ was encrypted as $(-9,-2)^{T}$ and that $(7,2)^{T}$ was encrypted as $(-2,9)^{T}$. Find the secret key M.

6 points

A	B	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12

N	O	P	Q	R	S	T	U	V	W	X	Y	Z

