Notes: This exam consists of 5 exercises. You have from 14:00 – 17:00 to solve them. You can reach 50 points.
Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.
You are allowed to use a simple, non-graphical pocket calculator. Usage of laptops and cell phones is forbidden.
1. This exercise is about groups. Let \(S := \{(a, b) \in \mathbb{Z}^2 \mid 2a + 3b \in 7\mathbb{Z}\} \).

(a) We define an operation \(\circ \) on elements of \(S \) as follows:
\[
(a_1, b_1) \circ (a_2, b_2) = (a_1 + a_2, b_1 + b_2).
\]
Show that \((S, \circ) \) is a commutative group.

(b) We define a different operation \(\diamond \) on \(S \) as follows:
\[
(a_1, b_1) \diamond (a_2, b_2) = (a_1 \cdot a_2, b_1 \cdot b_2).
\]
Investigate whether \((S, \Diamond) \) forms a group.

2. This exercise is about polynomials over \(\mathbb{F}_2 \).

(a) Compute the number \(N_2(4) \) of irreducible polynomials of degree 4 over \(\mathbb{F}_2 \).

(b) Let \(f(x) = x^4 + x^3 + 1 \) be a polynomial in \(\mathbb{F}_2[x] \). Compute \(\gcd(x^2 + x, f(x)) \) and \(\gcd(x^2 + x, f(x)) \).

(c) Use the Miller-Rabin test to show that \(f \) is irreducible over \(\mathbb{F}_2 \); you can use part b).

(d) State the product of the other irreducible polynomials of degree 4 over \(\mathbb{F}_2 \) using the results from the previous parts.

3. The integer \(p = 41 \) is prime and \(\mathbb{F}^*_41 = \langle 6 \rangle \). Alice uses the multiplicative group \(\mathbb{F}^*_41 \) with generator \(g = 6 \) as basis of a discrete-logarithm based system and has published her public key \(g_A = 30 \). Use the Pohlig-Hellman algorithm to compute an integer \(a \) so that \(g_a = g_A \) in \(\mathbb{F}^*_41 \). You can use that \(6^{-1} = 7 \) and \(6^{-2} = 8 \) in this group.

4. (a) Find all affine points on the twisted Edwards curve
\[-x^2 + y^2 = 1 + 5x^2y^2 \text{ over } \mathbb{F}_{11}.\]

(b) Verify that \(P = (9, 3) \) and \(Q = (9, 8) \) are on the curve. Compute \([2]P + Q \) in affine coordinates.
5. The Elliptic Curve Digital Signature Algorithm works as follows: The system parameters are an elliptic curve \(E \) over a finite field \(\mathbb{F}_p \), a point \(P \in E(\mathbb{F}_p) \) on the curve, the number of points \(n = |E(\mathbb{F}_p)| \), and the order \(\ell \) of \(P \). Furthermore a hash function \(h \) is given along with a way to interpret \(h(m) \) as an integer.

Alice creates a public key by selecting an integer \(1 < a < \ell \) and computing \(P_A = [\ell]P \); \(a \) is Alice’s long-term secret and \(P_A \) is her public key.

To sign a message \(m \), Alice first computes \(h(m) \), then picks a random integer \(1 < k < \ell \) and computes \(R = [k]P \). Let \(r \) be the \(x \) coordinate of \(R \) considered as an integer and then reduced modulo \(\ell \); for primes \(p \) you can assume that each field element of \(\mathbb{F}_p \) is represented by an integer in \([0, p-1]\) and that this integer is then reduced modulo \(\ell \). If \(r = 0 \) Alice repeats the process with a different choice of \(k \). Finally, she calculates

\[
s = k^{-1}(h(m) + r \cdot a) \mod \ell.
\]

If \(s = 0 \) she starts over with a different choice of \(k \).

The signature is the pair \((r, s)\).

To verify a signature \((r, s)\) on a message \(m \) by user Alice with public key \(P_A \), Bob first computes \(h(m) \), then computes \(w \equiv s^{-1} \mod \ell \), then computes \(u_1 \equiv h(m) \cdot w \mod \ell \) and \(u_2 \equiv r \cdot w \mod \ell \) and finally computes

\[
S = [u_1]P + [u_2]P_A.
\]

Bob accepts the signature as valid if the \(x \) coordinate of \(S \) matches \(r \) when computed modulo \(\ell \).

(a) Show that a signature generated by Alice will pass as a valid signature by showing that \(S = R \). [3 points]

(b) Show how to obtain Alice’s long-term secret \(a \) when given the random value \(k \) for one signature \((r, s)\) on some message \(m \). [3 points]

(c) You find two signatures made by Alice. You know that she is using an elliptic curve over \(\mathbb{F}_{1009} \) and that the order of the base point is \(\ell = 1013 \). The signatures are for \(h(m_1) = 345 \) and \(h(m_2) = 567 \) and are given by \((r_1, s_1) = (365, 448)\) and \((r_2, s_2) = (365, 969)\). Compute (a candidate for) Alice’s long-term secret \(a \) based on these signatures, i.e. break the system. [6 points]