All answers should be clearly argued, using a step-by-step argumentation resp. description (for algorithms). In particular in Problems 2, 3, and 4 you have to demonstrate your knowledge of general techniques; “direct” solutions that work because the parameters are small are not allowed. You are not allowed to use a computer or calculator.

This exam consists of five problems.

Distribution of points for the problems: 50 in total, 10 per problem.

1. Consider a language with only the letters a, b, c and let these letters occur with respective probabilities $0.7, 0.2, 0.1$. The ciphertext “a b c b a b b b a c” was made by using the Vigenère cryptosystem, where the letters a, b, c are identified with resp. 0, 1, 2 and the addition is modulo 3.

 (a) Suppose that the key length is either 1, 2 or 3. What is the most probable key length?

 (b) Determine the most probable key.

2. Consider the binary sequences $\{s_i\}_{i\geq 0}$, $\{t_i\}_{i\geq 0}$, and $\{u_i\}_{i\geq 0}$ generated by the LFSR’s with resp. characteristic polynomial $1 + x + x^2$, $1 + x + x^3$, resp. $1 + x + x^4$. Let $\{w_i\}_{i\geq 0}$ be defined by $w_i = s_i t_i \oplus u_i$, $i \geq 0$.

 (a) What are the possible periods of $\{s_i\}_{i\geq 0}$, $\{t_i\}_{i\geq 0}$, and $\{u_i\}_{i\geq 0}$?

 (b) Give an initial state $(s_0, s_1; t_0, t_1, t_2; u_0, u_1, u_2, u_3)$ of the three LFSR’s that leads to an output sequence $\{w_i\}_{i\geq 0}$ of period 21.

 (c) Compute $(w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8)$ for the initial state

 $$(s_0, s_1; t_0, t_1, t_2; u_0, u_1, u_2, u_3) = (1, 0; 1, 0, 0; 1, 0, 0, 0).$$

 Show that the linear complexity of these 9 terms is 4.
3. Demonstrate the Baby-Step Giant-Step method in full detail to solve the discrete logarithm problem $2^m \equiv 18 \pmod{37}$ (assume that you can store only 6 numbers).

4. The RSA system is being used on a smartcard to sign documents. Its public parameters are $n = 55$ and $e = 17$.
 (a) Determine the secret exponent d.
 (b) The smart card makes use of the Chinese Remainder Theorem to sign documents. Show the precalculations to set this up.
 (c) Evaluate the signature c of the message $m = 9$ in this way.
 (d) Suppose that the smartcard makes a mistake in the calculation of c_p which is the value of c modulo $p = 5$ and produces $\hat{c}_p = 2$. What will the output \hat{c} be?
 (e) How can one find the factorization of n from the values c and \hat{c}?

5. Let $p = 11$.
 (a) How many points lie on the elliptic curve $y^2 = x^3 + 3x + 4$ over \mathbb{Z}_p?
 (b) Verify that $P = (4, 6)$ lies on the curve.
 (c) Determine $2P$.