TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

Examination Cryptographic Algorithms (2WC00 \& 2F590), Friday, November 19, 2004, 9.00 - 12.00.

All answers should be clearly argued, using a step-by step argumentation resp. description (for algorithms).
You are not allowed to use a computer or calculator.
Distribution of points for the problems: 50 in total, 10 per problem.

1. The Hill cipher (1929) operates on pairs of letters from $\{a, b, \ldots, z\}$, which are in the standard way identified with the elements from the set $Z_{26}=\{0,1, \ldots, 25\}$. The Hill cipher maps the pair of plaintext letters $\left(p_{1}, p_{2}\right)$ to the ciphertext pair $\left(c_{1}, c_{2}\right)$ by means of:

$$
\binom{c_{1}}{c_{2}} \equiv K\binom{p_{1}}{p_{2}} \quad(\bmod 26), \quad \text { with key } K=\left(\begin{array}{ll}
k_{1,1} & k_{1,2} \\
k_{2,1} & k_{2,2}
\end{array}\right),
$$

where the $k_{i, j}$ are also in Z_{26}.
(a) What is a necessary and sufficient condition Cond on K to make this into a cryptosystem?
(b) Assuming that Cond holds, how does one perform a decryption?
(c) Let $K=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$. Show that Cond holds and check that $\left(\begin{array}{cc}25 & 2 \\ 1 & 25\end{array}\right)$ can be used for decryption.
(d) Suppose that you have intercepted the ciphertext"pqcfku" and know that it originated from the plaintext "friday". Determine the key K. (Tip: start with the first two pairs of letters.)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	c

2. Consider the binary sequence $\underline{s}=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)$ of length n and let L be its linear complexity. Show that L is minimal with respect to the property that $\left(s_{L}, s_{L+1}, \ldots, s_{n-1}\right)^{T}$ is in the linear span of the columns of

$$
\left(\begin{array}{ccccc}
s_{0} & s_{1}, & \cdots & \cdots & s_{L-1} \\
s_{1} & s_{2}, & \cdots & \cdots & s_{L} \\
\vdots & & & & \vdots \\
s_{n-L-1} & s_{n-L}, & \cdots & \cdots & s_{n-2}
\end{array}\right)
$$

Show that the linear equivalence (complexity) of ($0,0,1,1,0,1,1,1,0$) is 5 and give a LFSR of length 5 that can output this sequence.
3. Alice and Bob make use of the Diffie-Hellman key exchange algorithm to agree on 10 common bits. They work with binary polynomials modulo $1+x^{7}+x^{10}$. Bob makes public the bit-string 1010011000 which stands for the polynomial $1+x^{2}+x^{5}+x^{6}$. The secret key of Alice is 2. On which secret will they agree?
4. Alice sends ciphertext $c=40$ to Bob. The public parameters of Bob are $n=437$ and $e=233$. Find the factorization of n with "brute force", determine the decryption exponent of Bob and find the plaintext corresponding to message c.
5. Show that the points $P=(2,9)$ and $Q=(11,6)$ lie on the elliptic curve $\mathcal{E}: y^{2}=x^{3}+x+3$ over Z_{17}. Determine the line l through P and Q and find the third point of intersection of l with \mathcal{E}. Determine $P+Q$ on \mathcal{E}.

