TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

Examination Cryptographic Algorithms (2WC00), Tuesday, January 20, 2004, 14.00-17.00

All answers should be clearly argued, using a step-by step argumentation resp. description (for algorithms).
You are not allowed to use a computer or calculator.
This exam consists of five problems.
Distribution of points for the problems: 50 in total, 10 per problem.

1. Eve intercepts the following ciphertext
"dcnolcbiwyypzpysrrobrsrqwejvpcdxcbw".
She knows that is was made with the Vigenère cryptosystem. What is the most likely key length? (Hint: use Kasiski's method.)
2. Let $\left\{s_{i}\right\}_{i \geq 0}$ be a sequence generated by a linear feedback shift register with primitive characteristic polynomial $f(x)$ of degree n.
(a) Prove that $f(x)$ has an odd number of coefficients equal to 1 .
(b) Show that a full period of the output sequence does contain a block of length n but not of length $n-1$.
(c) Let $f(x)=x^{7}+x+1$ and let the output sequence start as follows $\{1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,0,1,1,0,0,0,1, \ldots\}$. Write $S(x)=\sum_{i \geq 0} s_{i} x^{i}$ as $u(x) / f^{*}(x)$, where f^{*} denotes the reciprocal of f.
3. Use the Pollard- ρ method to solve $3^{m} \equiv 2 \quad(\bmod 23)$. You may but do not have to use Floyd's cycle-finding algorithm.
4. Use $u=3$ as strong witness to show that $m=91$ is a composite number (the Miller-Rabin test).
5. How many points lie on the elliptic curve $y^{2}=x^{3}+x+1$ over Z_{11} ? Check that the point $P=(3,8)$ lies on the curve. Determine $2 P$.
