# TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 24 January 2017 

Name :

TU/e student number :

| Exercise | 1 | 2 | 3 | 4 | 5 | total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| points |  |  |  |  |  |  |

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.
This exam consists of 5 exercises. You have from 13:30-16:30 to solve them. You can reach 100 points.
Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.
You are allowed to use a calculator without networking abilities. Usage of laptops and cell phones is forbidden.

1. This problem is about RSA encryption.
(a) Bob's public key is $(n, e)=(27887,5)$. Compute the encryption of $m=1234$ to Bob.

$$
1 \text { point }
$$

(b) Alice's chooses $p=1259$ and $q=2531$. Compute Alice's public key ( $n, e$ ), using $e=3$, and the matching private key $d$.

$$
2 \text { points }
$$

(c) Alice receives ciphertext $c=2766602$. Use the secret key $d$ computed in the first part of this exercise and compute the CRT private keys $d_{p}$ and $d_{q}$. Decrypt the ciphertext using the CRT method.
Verify correctness of your answer by using $d$ from the previous exercise directly. 6 points
2. This exercise is about computing discrete logarithms in the multiplicative group of $\mathbb{F}_{p}$ with $p=221537$. Note that $p-1=2^{5} \cdot 7 \cdot 23 \cdot 43$. A generator of $\mathbb{F}_{p}^{*}$ is $g=5$. Charlie's public key is $h=g^{c}=32278$.
(a) Use the Pohlig-Hellman attack to compute Charlie's secret key $c$ modulo $2^{5}$ and modulo 7 .
Note: This is not the full attack, the computations modulo 23 and modulo 43 and the CRT computation are done in the next parts. Also remember that Pohlig-Hellman computes one prime at a time, not one prime power at a time.
(b) The computation for the group of order 43 starts with the DLP $h^{(p-1) / 43}=9972$ to the base $g^{(p-1) / 43}=127913$. Use the BabyStep Giant-Step attack in the subgroup of size 43 to compute $c$ modulo 43.
(c) Use the Baby-Step Giant-Step attack in the subgroup of size 23 to compute $c$ modulo 23. Make sure to compute the correct powers of $h$ and $g$ at the start. 8 points
(d) Combine the results from the previous two parts to compute $c$. Verify your answer, i.e., compute $g^{c}$.
3. This exercise is about factoring $n=27887$.
(a) Use Pollard's rho method for factorization to find a factor of 27887. Use starting point $x_{0}=17$, iteration function $x_{i+1}=x_{i}^{2}+1$ and Floyd's cycle finding method, i.e. compute $\operatorname{gcd}\left(x_{2 i}-x_{i}, 27887\right)$ until a non-trivial gcd is found. Make sure to document the intermediate steps.
(b) Use the $p-1$ method to factor 27887 with basis $a=2$ and exponent $s=\operatorname{lcm}\{1,2,3,4,5, \ldots, 11\}$.
4. (a) Find all affine points on the Edwards curve $x^{2}+y^{2}=1+8 x^{2} y^{2}$ over $\mathbb{F}_{11}$.

$$
8 \text { points }
$$

(b) Verify that $P=(9,2)$ is on the curve. Compute $3 P$.
(c) Translate the curve and $P$ to Montgomery form

$$
B v^{2}=u^{3}+A u^{2}+u,
$$

i.e. compute $A, B$, and the resulting point $P^{\prime}$. Verify that $P^{\prime}$ is on the Montgomery curve.
5. The ElGamal signature scheme works as follows. Let $G=\langle g\rangle$ be a group of order $\ell$. User $A$ picks a private key $a$ and computes the matching public key $h_{A}=g^{a}$. To sign message $m, A$ picks a random nonce $k$ and computes $r=g^{k}$ and $s \equiv k^{-1}(r+\operatorname{hash}(m) a) \bmod \ell$. The signature is $(r, s)$.
We have shown that one can compute $a$ from knowing $k$ and stated that repated nonces allow recovery of $a$ as well.
Bob wants to avoid these issues and deterministically generates $k$ by incrementing $k$ by 1 for each signature.
(a) This part is a reminder of what we sketched in class. You obtain $\left(r, s_{1}\right)$ on $m_{1}$ and $\left(r, s_{2}\right)$ on $m_{2} \neq m_{1}$ and know that these were generated using the same $k$. Show how to obtain $a$. 5 points
(b) You obtain $\left(r_{1}, s_{1}\right)$ on $m_{1}$ and $\left(r_{2}, s_{2}\right)$ on $m_{2}$ and know that these were generated such that $k_{2}=k_{1}+1$.
Show how to obtain $a$.

$$
9 \text { points }
$$

(c) You obtain $\left(r_{1}, s_{1}\right)$ on $m_{1}$ and $\left(r_{3}, s_{3}\right)$ on $m_{3}$ and know that these were generated not too long after one another, such that $k_{3}=k_{1}+i$ for some small $i$. Show how to obtain $i$ and $a$. 7 points

