TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Wednesday 14 December 2016

Name :

Home university :
Student number :

Exercise	1	2	3	4	5	6	total
points							

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.
This exam consists of 6 exercises. You have from 13:30-16:30 to solve them. You can reach 100 points.
Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on the paper provided; should you require more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.
You are allowed to use a calculator without networking abilities. Usage of laptops (other than those provided) and cell phones is forbidden.

1. This problem is about RSA encryption.
(a) Alice chooses $p=457$ and $q=383$. Compute Alice's public key (n, e), using $e=5$, and the matching private key d. 2 points
(b) Bob uses public key $(n, e)=(101617,7)$ and secret key $d=57703$.

He receives ciphertext $c=26497$.
Decrypt the ciphertext.
1 points
2. This problem is about the Diffie-Hellman key exchange. The system uses the multiplicative group \mathbb{F}_{p}^{*} modulo the prime $p=4327$. The element $g=3 \in \mathbb{F}_{4327}^{*}$ has order 4326 and is thus a generator of the full multiplicative group.
(a) Alice chooses $a=333$ as her secret key. Compute Alice's public key.
(b) Alice receives $h_{b}=3107$ from Bob as his Diffie-Hellman keyshare. Compute the key shared between Alice and Bob, using Alice's secret key from the first part of this exercise.
3. This exercise is about computing discrete logarithms in the multiplicative group of \mathbb{F}_{p} for some prime p.
(a) Let $p=1249$ and note that $p-1=2^{5} \cdot 3 \cdot 13$. A generator of \mathbb{F}_{p}^{*} is $g=7$. Bob's public key is $h_{b}=g^{b}=1195$.
Use the Pohlig-Hellman attack to compute Bob's secret key b; make sure to handle each power of 2 separately as in the algorithm description. Verify your answer, i.e., compute g^{b}. 12 points
(b) Let $p=4327$, so $p-1=2 \cdot 3 \cdot 7 \cdot 103$. Charlie's public key is $h_{c}=g^{c}=172$. You notice that $h_{c}^{103}=1$, so, Charlie's secret c is a multiple of 42 . Use the Baby-Step Giant-Step attack in the subgroup of order 103 to compute Charlie's secret c. Verify your answer, i.e., compute g^{c}.
Hint: Do not forget to include that c is a multiple of 42.
13 points
4. This exercise is about factoring $n=101617$.
(a) Use Pollard's rho method for factorization to find a factor of 101617 with iteration function $x_{i+1}=x_{i}^{2}+11$ and Floyd's cycle finding method, i.e. after each increment in i compute $\operatorname{gcd}\left(x_{2 i}-x_{i}, 101617\right)$ until a non-trivial gcd is found. Start with $x_{0}=5$.

$$
12 \text { points }
$$

(b) Use the $p-1$ method to factor $n=101617$ with basis $a=2$ and exponent $s=\operatorname{lcm}\{1,2,3,4,5,6,7,8,9,10,11,12,13\}$. Make sure to determine both factors of n.
5. (a) Find all affine points, i.e. points of the form (x, y), on the Edwards curve

$$
x^{2}+y^{2}=1+12 x^{2} y^{2}
$$

over \mathbb{F}_{17} and state the number of points.
10 points
(b) Verify that $P=(5,4)$ is on the curve. Compute the order of P.
Hint: You may use information learned about the order of points on Edwards curves.
(c) Translate the curve and P to Montgomery form

$$
B v^{2}=u^{3}+A u^{2}+u,
$$

i.e. compute A, B and the resulting point P^{\prime}.

Verify that the resulting point P^{\prime} is on the Montgomery curve.
6 points
6. In 2006 NIST, the National Institute for Standards and Technology, standardized Dual EC as a method to generate pseudo random numbers. A Pseudo-Random Number Generator (PRNG) is an algorithm that takes as input an integer (or finite field element) and turns it into a long sequence of integers that should be unpredictable based on previous outputs, if the initial input is secret.
The "EC" in Dual EC stands for Elliptic Curve. The following gives a slightly simplified description of Dual EC but the attack you will find works on deployed versions with small modifications.

Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve over \mathbb{F}_{p}, with p prime. Let P be a a point on $E\left(\mathbb{F}_{p}\right)$ of prime order ℓ and let $Q=k P$ for some integer k. Typical sizes are that p and ℓ have 256 bits and k is a random positive integer less than ℓ.
The input s_{0} to Dual EC is an integer. The first step is to compute $s_{0} P$, take the x-coordinate of $s_{0} P$ and lift that to an integer s_{1}. Elements of \mathbb{F}_{p} are represented as integers in $[0, p-1]$; in the following we no longer explicitly state the process of lifting from an element of \mathbb{F}_{p} to an integer.
To compute the i th output, $i \geq 1$, two elliptic curve operations happen: First, compute and output $r_{i}=x\left(s_{i} Q\right)$, i.e., compute $s_{i} Q$ and then take the x-coordinate, and output the matching integer. Second, compute $s_{i+1}=x\left(s_{i} P\right)$. Here is a schematic drawing of the functions. The values r_{i} are the output values; the s_{i} are kept internal. If an attacker learns s_{i} he can predict all future outputs.

(a) Attacker Eve knows all details about Dual EC, including the curve E, points P and Q and scalar k. She does not know the initial secret s_{0}. She observes r_{1}, r_{2}, \ldots. Show how she can compute s_{4}. Hint: We did not cover computation of square roots in class, but it is an easy computation.
(b) Let $p=401$. The elliptic curve $E: y^{2}=x^{3}-3 x+6$ over \mathbb{F}_{p} has prime order $\ell=397$. The point $P=(49,94)$ has order ℓ; let $Q=265 P=(16,92)$.
You observe $r_{1}=146$. A square-root computation shows you that r_{1} comes from the point $s_{1} Q= \pm(146,273)$.
Compute s_{2}.
14 points
(c) Attacker Donald knows p and E but not the points P and Q and scalar k. He observes that the outputs of some PRNG are integers less than p but he is not sure that the PRNG uses Dual EC.
Show how he can distinguish Dual EC output from random elements of \mathbb{F}_{p}.

