Cryptography

Andreas Hülsing

6 September 2016

- Homepage: http: //www.hyperelliptic.org/tanja/teaching/crypto16/
- Lecture is recorded \Rightarrow First row might be on recordings.
- Anything organizational: Ask Tanja on Thursday...

Setting: Alice and Bob want to chat.

3/21

- Secrecy,
- Integrity,
- Authenticity,
- Non-repudiation,
- (Privacy).

- Secrecy, \leftarrow We focus on this today
- Integrity,
- Authenticity,
- Non-repudiation,
- (Privacy).

Setting: What about Eve?

Eve

5/21

- Passive: Listen.
- Active: Intercept & Manipulate. \Rightarrow Change, add, drop content.

Encryption

Already the Greeks....

• Kdoor Fubswr

Later in Rome

• Kdoor Fubswr

• Hallo Crypto

Caesar cipher. Also known as ROT3. "Key table":

а	b	с	d	e	f	g	h	i	j	k	I	m
d	e	f	g	h	i	j	k	I	m	n	0	р
n	0	р	q	r	s	t	u	v	w z	х	у	z

• Aka. secret key encryption.

- Examples: Caesar, Skytale, ..., DES, AES.
- ONE (secret) key: Stick, rotation, bit string.

- Aka. secret key encryption.
- Examples: Caesar, Skytale, ..., DES, AES.
- ONE (secret) key: Stick, rotation, bit string.

- Aka. secret key encryption.
- Examples: Caesar, Skytale, ..., DES, AES.
- ONE (secret) key: Stick, rotation, bit string.

Symmetric Encryption Scheme

A symmetric encryption scheme E = (Kg, Enc, Dec) consists of three PPT algorithms:

- Kg(1ⁿ): Key generation algorithm. Upon input of security parameter *n* in unary, outputs a secret key sk.
- Enc_{sk}(m): Encryption algorithm. Upon input of a secret key sk and plaintext message m, outputs the encryption / ciphertext c of m under sk.
- $Dec_{sk}(c)$: Decryption algorithm. Upon input of a secret key sk and a ciphertext c, outputs the decryption m of cunder sk.

Such that:

 $(\forall \mathsf{sk} \leftarrow \mathsf{Kg}(1^n), m) : \mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{sk}}(m)) = m$ (Completeness)

Remark: Sometimes we use $Enc(sk, m) \Leftrightarrow Enc_{sk}(m)$.

Symmetric Encryption Scheme

A symmetric encryption scheme E = (Kg, Enc, Dec) consists of three PPT algorithms:

- Kg(1ⁿ): Key generation algorithm. Upon input of security parameter *n* in unary, outputs a secret key sk.
- Enc_{sk}(m): Encryption algorithm. Upon input of a secret key sk and plaintext message m, outputs the encryption / ciphertext c of m under sk.
- $Dec_{sk}(c)$: Decryption algorithm. Upon input of a secret key sk and a ciphertext c, outputs the decryption m of cunder sk.

Such that:

 $(\forall \mathsf{sk} \leftarrow \mathsf{Kg}(1^n), m) : \mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{sk}}(m)) = m$ (Completeness)

Remark: Sometimes we use $Enc(sk, m) \Leftrightarrow Enc_{sk}(m)$.

- Above definition only functional.
- What does it mean for an encryption scheme to be secure?
- Is Caesar cipher secure? Why not?

Kdoor Fubswr Hallo Crypto **Semantic security:** Everything one can learn about a plaintext given its encryption, one can also learn without knowledge of the cipher text.

- Complicated formal definition.
- Hard to work with.
- Technical, equivalent notion: Indistinguishable ciphertexts.

• Game-based: Adversary vs. Challenger

Indistinguishable ciphertexts (IND)

Adversary

Challenger

Indistinguishable ciphertexts under choosen plaintext attacks (IND-CPA)

- Adversary might see more ciphertexts than the one she wants to learn more about.
- Attack against Enigma.
- To model worst-case, attacker is allowed to choose plaintexts and learn encryption of those.

Indistinguishable ciphertexts under choosen plaintext attacks (IND-CPA)

Indistinguishable ciphertexts under choosen Ciphertext attacks (IND-CCA)

- Adversary might be able to learn decryptions of ciphertexts other than the target one.
- Users might leak plaintexts corresponding to ciphertexts the adversary saw.
- Practice: Often adversary only learns if a ciphertext is well-formed.
- Model: Additional access to decryption oracle. (Again, worst-case.)
 - Oracle returns either $\text{Dec}_{sk}(c)$ or \perp if c is no valid ciphertext.

- Symmetric encryption is very efficient, but how to share keys?
- Solution: Public-key / Asymmetric encryption.
- Key pair: Public encryption key pk and secret decryption key / private key sk.
- Public key can be published without requiring secrecy.
- Public key can be used to send encryption of (symmetric) secret key.

Asymmetric Encryption Scheme

A symmetric encryption scheme E = (Kg, Enc, Dec) consists of three PPT algorithms:

- $Kg(1^n)$: Key generation algorithm. Upon input of security parameter *n* in unary, outputs a key pair (pk,sk).
- $Enc_{pk}(m)$: Encryption algorithm. Upon input of a public key pk and plaintext message m, outputs the encryption / ciphertext c of m under pk.
 - $Dec_{sk}(c)$: Decryption algorithm. Upon input of a private key sk and a ciphertext c, outputs the decryption m of cunder sk.

Such that:

 $(\forall (\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Kg}(1^n), m) : \mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{pk}}(m)) = m$ (Completeness)

Part II: Break a toy public key encryption scheme.

Starting position

Selected nodes = private key

Perfect code – we'll build one

Each node is connected to exactly one selected node. Perfect code: there exists a selection of nodes so that each node is in the neighborhood of exactly one selected node (a selected node is in its own neighborhood.)

Additional edges

To hide the structure of the selected nodes, further edges are included. These edges must not touch the selected nodes.

This gives a perfect code – proof it!

Public key

All edges, no highlighting.

Encryption of m = 13

13 = 1 + 2 + 3 - 4 + 5 + 4 + 3 - 1. Partition 13, one share per node.

Encryption of m = 13

For each node compute the sum of values at all nodes at distance at most 1, i.e. the value at the node itself plus all nodes directly connected to it.

Encrypted message

For each node write the sum computed in the previous step next to it.

Decryption

Add values at points seleted as secret key.

4+2+7=13. Why does this work?

Overview

A: 1. sheet: secret key (1), intermediate steps (1–3)

2. sheet: public key (4)

decryption (8)

B: 1. sheet: computations (5–6) 2.sheet: "black" numbers next to nodes (7)Why does this system work? Break the examples. Break this for graphs with 1000 nodes.