

Cryptographic Hash Functions Part I

Cryptography 1

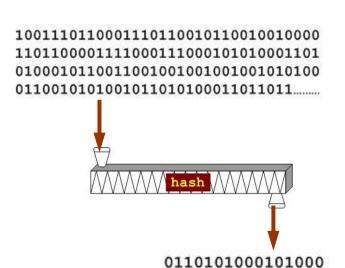
Andreas Hülsing, TU/e
Based on slides by Sebastiaan de Hoogh, TU/e

how are hash functions used?

- integrity protection
 - strong checksum
 - for file system integrity (Bit-torrent) or software downloads
- password hashing
 - "one-way encryption" (≠ encryption !!!)
 - dedicated algorithms like scrypt / argon2 use HF as building block
- digital signature (asymmetric)
- MAC message authentication code (symmetric)
 - Efficient symmetric 'digital signature'
- key derivation
- pseudo-random number generation
- ...

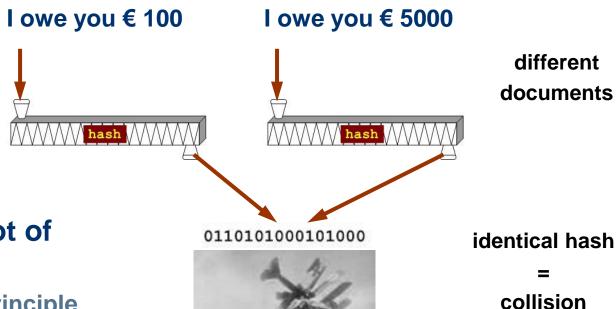
what is a hash function?

- $h: \{0, 1\}^* \to \{0, 1\}^n$
 - (general: $h: S \to \{0, 1\}^n$ for some set S)
- input: bit string m of arbitrary length
 - length may be 0
 - in practice a very large bound on the length is imposed, such as 2⁶⁴ (≈ 2.1 million TB)
 - input often called the message
- output: bit string h(m) of fixed length n
 - e.g. n = 128, 160, 224, 256, 384, 512
 - compression
 - output often called hash value, message digest, fingerprint
- h(m) is easy to compute from m
- no secret information, no secret key



hash collision

• m_1 , m_2 are a collision for h if $h(m_1) = h(m_2)$ while $m_1 \neq m_2$



there exist a lot of collisions

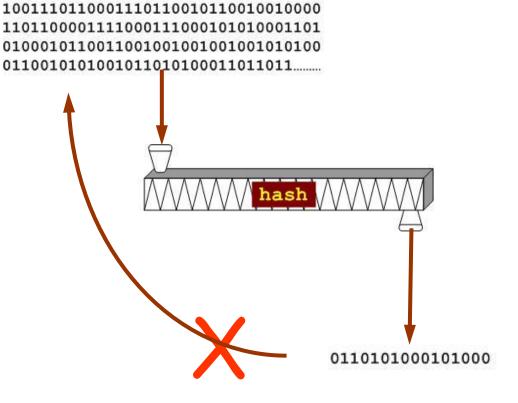
pigeonhole principle(a.k.a. Schubladensatz)

<u>preimage</u>

• given h_0 , then m is a *preimage* of h_0 if

 $h(m) = h_0$

Note: h_0 might have many preimages!



cryptographic hash function requirements

- collision resistance: it should be computationally infeasible to find a collision m_1 , m_2 for h
 - i.e. $h(m_1) = h(m_2)$
- preimage resistance: given h_0 it should be computationally infeasible to find a preimage m for h_0 under h
 - i.e. $h(m) = h_0$
- second preimage resistance: given m_0 it should be computationally infeasible to find a colliding m for m_0 under h
 - i.e. $h(m) = h(m_0)$

Other terminology (don't use)

- one-way function = preimage resistant
- weak collision resistant = second preimage resistant
- strong collison resistant = collision resistant
- OWHF one-way hash function
 - preimage resistant
- CRHF collision resistant hash function
 - second preimage resistant and collision resistant

Don't use these. Be more specific!

Formal treatment

- Efficient Algorithm
 - Runs in polynomial time,
 i.e. for input of length n, t_A ≤ n^k = poly(n) for some constant k
- Probabilistic Polynomial Time (PPT) Algorithm:
 - Randomized Algorithm
 - Runs in polynomial time
 - Outputs the right solution with some probability
- Negligible:
 We call ε(n) negligible if

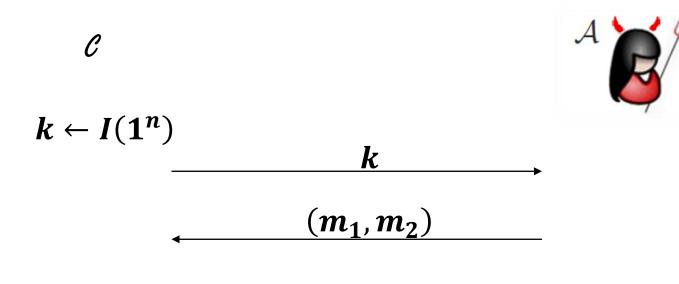
$$(\exists n_c > 0)(\forall n > n_c): \varepsilon(n) < \frac{1}{poly(n)}$$

Formal treatment

For security parameter n, key space K, message space M and range R, a family of hash functions $F_n=(I,H)$ is a pair of efficient algorithms:

- $I(1^n)$: The key generation algorithm that outputs a (public) function key $k \in K$
- H(k,m): Takes a key $k \in K$ and a message $m \in M$ and outputs outputs the hash value $H(k,m) \in R$

Formal security properties: CR



$$H(k,m_1) = H(k,m_2)$$

$$\wedge (m_1 \neq m_2)?$$

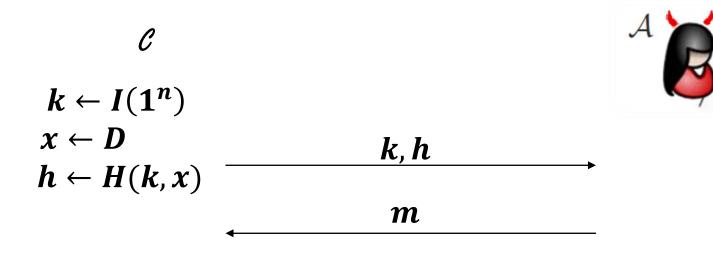
Formal security properties: CR

Collision resistance: For any PPT adversary A, the following probability is negligible in n:

$$Pr[k \leftarrow I(1^n), (m_1, m_2) \leftarrow A(1^n, k):$$

 $H(k, m_1) = H(k, m_2) \land (m_1 \neq m_2)$

Formal security properties: PRE



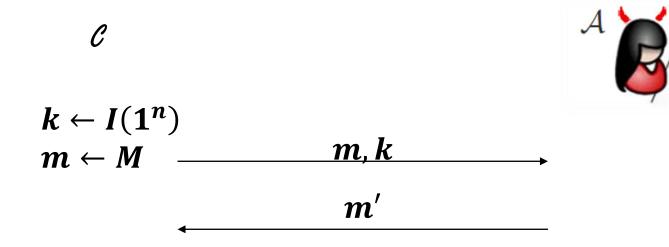
$$H(k,m)=h$$
?

Formal security properties: PRE

Preimage resistance: For any PPT adversary A, the following probability is negligible in n:

$$Pr[k \leftarrow I(1^n), x \leftarrow D, h \leftarrow H(k, x), \\ m \leftarrow A(1^n, k, h): H(k, m) = h]$$

Formal security properties: SPR



$$H(k,m) = H(k,m')$$

$$\wedge (m \neq m')?$$

Formal security properties: SPR

Second-preimage resistance: For any PPT adversary A, the following probability is negligible in n:

$$Pr[k \leftarrow I(1^n), m \leftarrow M, m' \leftarrow A(1^n, k, m):$$

 $H(k, m) = H(k, m') \land (m \neq m')]$

Reductions

- Transform an algorithm for problem 1 into an algorithm for problem 2.
- "Reduces problem 2 to problem 1"
- Allows to relate the hardness of problems:

If there exists an efficient reduction that reduces problem 2 to problem 1 then an efficient algorithm solving problem 1 can be used to efficiently solve problem 2.

Reductions II

Use in cryptography:

- Relate security properties
- "Provable Security": Reduce an assumed to be hard problem to breaking the security of your scheme.
- Actually this does not proof security! Only shows that scheme is secure IF the problem is hard.

Relations between hash function security properties

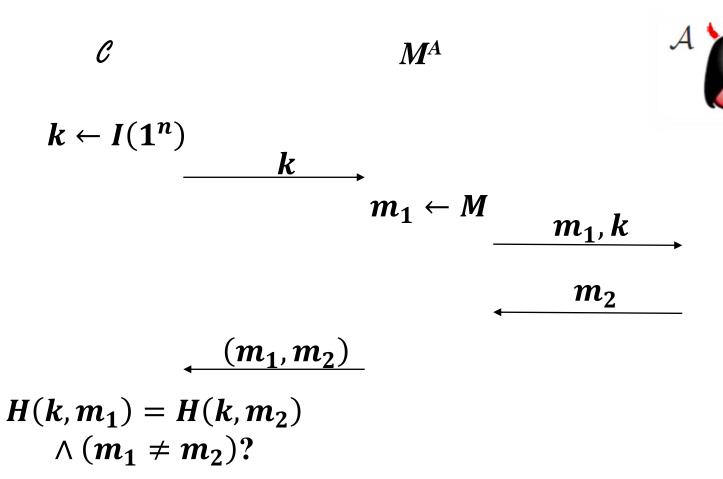
Easy start: CR -> SPR

Theorem (informal): If *F* is collision resistant then it is second preimage resistant.

Proof:

- By contradiction: Assume A breaks SPR of F then we can build an oracle machine M^A that breaks CR.
- Given key k, M^A first samples random $m \leftarrow M$
- M^A runs $m' \leftarrow A(1^n, k, m)$ and outputs (m', m)
- M^A runs in approx. same time as A and has same success probability. -> Tight reduction

Reduction: CR -> SPR



Easy start: CR -> SPR

Theorem (informal): If *F* is collision resistant then it is second preimage resistant.

Proof:

- By contradiction: Assume A breaks SPR of F then we can build an oracle machine M^A that breaks CR.
- Given key k, M^A first samples random $m \leftarrow M$
- M^A runs $m' \leftarrow A(1^n, k, m)$ and outputs (m', m)
- M^A runs in approx. same time as A and has same success probability. -> Tight reduction

Theorem (informal): If *F* is second-preimage resistant then it is also preimage resistant.

Proof:

- By contradiction: Assume A breaks PRE of F then we can build an oracle machine M^A that breaks SPR.
- Given key k, m, M^A runs $m' \leftarrow A(1^n, k, H(k, m))$ and outputs (m', m)
- M^A runs in same time as A and has same success probability.

Do you find the mistake?

Theorem (informal): If *F* is second-preimage resistant then it is also preimage resistant.

Counter example:

• the *identity function id*: $\{0,1\}^n \rightarrow \{0,1\}^n$ is second-preimage resistant but not preimage resistant

Theorem (informal): If *F* is second-preimage resistant then it is also preimage resistant.

Proof:

- By contradiction: Assume A breaks PRE of F then we can build an oracle machine M^A that breaks SPR.
- Given key k, m, M We are not guaranteed outputs (m',m) that $m \neq m'$!
- M^A runs in same time as A and has same success probability.

Do you find the mistake?

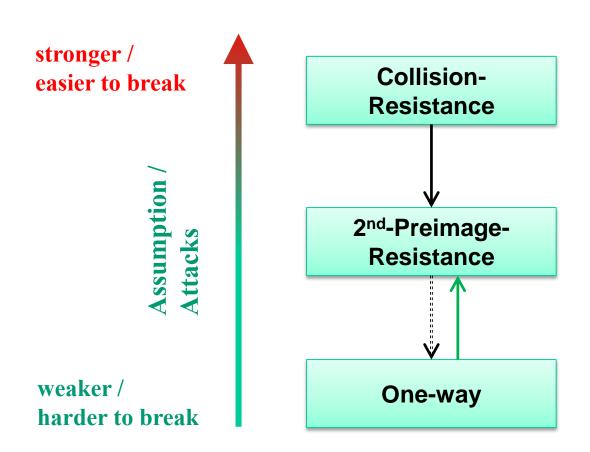
Theorem (informal, corrected): If F is second-preimage resistant, $|M| \ge 2|R|$, and H(k,m) is regular for every k, then it is also preimage resistant.

Proof:

- By contradiction: Assume A breaks PRE of F then we can build an oracle machine M^A that breaks SPR.
- Given key k, m, M^A runs $m' \leftarrow A(1^n, k, H(k, m))$ and outputs (m', m)
- M^A runs in same time as A and has at least half the success probability.

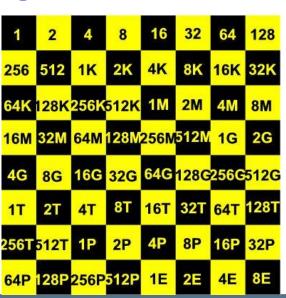
Same corrections have to be applied for CR -> PRE

Summary: Relations



generic (brute force) attacks

- assume: hash function behaves like random function
- preimages and second preimages can be found by random guessing search
 - search space: $\approx n$ bits, $\approx 2^n$ hash function calls
- collisions can be found by birthdaying
 - search space: ≈ ½n bits,
 ≈ 2½n hash function calls
- this is a big difference
 - MD5 is a 128 bit hash function
 - (second) preimage random search:
 ≈ 2¹²⁸ ≈ 3x10³⁸ MD5 calls
 - collision birthday search: only
 ≈ 2⁶⁴ ≈ 2x10¹⁹ MD5 calls



birthday paradox

- birthday paradox
 given a set of t (≥ 10) elements
 take a sample of size k (drawn with repetition)
 in order to get a probability ≥ ½ on a collision
 (i.e. an element drawn at least twice)
 k has to be > 1.2 √t
- consequence
 if F: A → B is a surjective random function
 and |A/>> |B/
 then one can expect a collision after about √(|B/)
 random function calls

meaningful birthdaying

random birthdaying

- do exhaustive search on n/2 bits
- messages will be 'random'
- messages will not be 'meaningful'

Yuval (1979)

- start with two meaningful messages m_1 , m_2 for which you want to find a collision
- identify n/2 independent positions where the messages can be changed at bitlevel without changing the meaning
 - e.g. tab ←→ space, space ←→ newline, etc.
- do random search on those positions

implementing birthdaying

naïve

- store $2^{n/2}$ possible messages for m_1 and $2^{n/2}$ possible messages for m_2 and check all 2^n pairs

less naïve

- store $2^{n/2}$ possible messages for m_1 and for each possible m_2 check whether its hash is in the list
- smart: Pollard-p with Floyd's cycle finding algorithm
 - computational complexity still $O(2^{n/2})$
 - but only constant small storage required

Pollard-p and Floyd cycle finding

Pollard-p

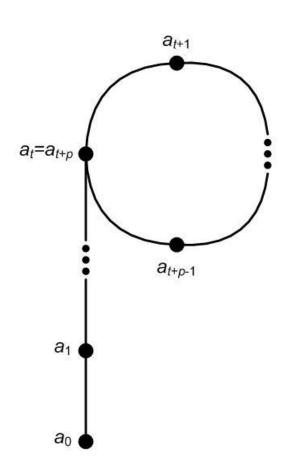
– iterate the hash function:

$$a_0$$
, $a_1 = h(a_0)$, $a_2 = h(a_1)$, $a_3 = h(a_2)$, ...

- this is ultimately periodic:
 - there are minimal t, p such that $a_{t+p} = a_t$
 - theory of random functions:
 both t, p are of size 2^{n/2}

Floyd's cycle finding algorithm

- Floyd: start with (a_1,a_2) and compute $(a_2,a_4), (a_3,a_6), (a_4,a_8), ..., (a_q,a_{2q})$ until $a_{2q}=a_q;$ this happens for some q < t + p



security parameter

- security parameter n: resistant against (brute force / random guessing) attack with search space of size 2ⁿ
 - complexity of an *n*-bit exhaustive search
 - n-bit security level
- nowadays 2⁸⁰ computations deemed impractical
- but 2⁶⁴ computations are possible
 - security parameter 64 now seen as insufficient
- to have some security margin: security parameter 128 is required
- for collision resistance hash length should be 2n to reach security with parameter n
- -> Use at least 256 bit hash functions like SHA2-256