
Chapter 1

Finite Fields

1.1 Introduction

Finite fields are one of the essential building blocks in coding theory and cryptography
and thus appear in many areas in IT security. This section introduces finite fields sys-
tematically stating for which orders finite fields exist, shows how to construct them and
how to compute in them efficiently.
For applications 3 types of fields are particularly interesting – fields with a prime number
of elements, extension fields of the minimal field {0, 1} and optimal extension fields. We
met prime fields, the first kind of fields, already in Chapter ?? as ZZ/pZZ, the second
one appeared as an example of a vector space and we also defined some multiplicative
structure on it which lead to a ring but not to a field. Here were show how one constructs
a binary field. These fields are particularly suitable for hardware implementations as the
arithmetic involves basic bit operations. If, however, software implementations are the
focus then it might be interesting to go for yet another construction in which the size of
the elements is tailored to the word size of the processor, such fields are called optimal
extension fields.
References for this chapter are:

• T. Høholdt and J. Justesen, ”A Course In Error-Correcting Codes”, Springer Verlag.
Contains details for binary fields.

• R. Lidl and H. Niederreiter, ”Finite Fields, Encyclopedia of Mathematics and its
Applications 20”, Addison-Wesley.

• R. Lidl and H. Niederreiter, ”Introduction to finite fields and their applications”,
Cambridge University Press.

• A. Menezes, ”Applications of Finite Fields”, Kluwer.

• T. Murphy, ”Finite Fields”, Script online at
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf

• V. Shoup, ”A Computational Introduction to Number Theory and Algebra”, Cam-
bridge University Press. This book is also available online for download at
http://www.shoup.net/ntb/ntb-b5.pdf
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In this chapter we first assume that finite fields exist and study their properties. We show
that for any prime p and for any natural number n there exists a field with pn elements.
We then detail constructions of finite fields and go into the arithmetic properties.

1.2 First definitions

Definition 1 (Finite field) A field with finitely many elements is called a finite field.
We denote a finite field with q elements by IFq.

Finite fields are also called Galois fields, named after Évariste Galois, and several books
and scientific papers thus use GF (q) to denote a finite field with q elements.

Definition 2 (Characteristic) Let K be a field. The smallest natural number n > 0
such that

n · 1 = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n −times

= 0

is called the characteristic of K, denoted by char(K) = n.
If no such n exists one puts char(K) = 0.

We have already encountered the following example in the previous chapter but state it
again here as the first example of a finite field.

Example 3 The ring IFp = ZZ/pZZ is a finite field of characteristic p. Obviously IFp has
exactly p elements and is thus finite, we have seen that it is a field and every element
vanishes under multiplication by p, thus the characteristic is p.

The following lemma gives useful properties of the characteristic.

Lemma 4 Let K be a field.

1. If the characteristic of K is positive, char(K) is prime.

2. Finite fields have char(K) > 0. By the first part of this lemma we even have that a
finite field has prime characteristic.

Proof.

1. Assume on the contrary that there exists a nontrivial factorization char(K) = n =
p · q. Then

0 = n ·1 = (p · q) ·1 = p ·(q ·1) = (p ·1) ·(q ·1) = (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
p -times

· (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
q -times

.

We encountered earlier that fields have no zero divisors, that means that one of
the terms in the product must be zero which contradicts the minimality of the
characteristic.

2. In a finite field not all of 1, 2 · 1, 3 · 1, . . . can be distinct, e.g. r · 1 = s · 1 for some
s > r. Then ⇒ (s− r) · 1 = 0 and so char(K)|s− r > 0

2

Lemma 5 Let K be a field. Then there exists a smallest subfield of K.
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Proof. Let F1, F2 be subfields of K, then their intersection F1 ∩ F2 is also a subfield of
K.
This holds for arbitrary many subfields, thus also for the intersection of all subfields of
K. Obviously, the resulting intersection is the smallest subfield of K. 2

This smallest subfield is an important concept and thus deserves a name.

Definition 6 (Prime subfield)
The smallest subfield of a field K is called the prime subfield or short prime field of K.

Depending on K the prime subfield can be finite or infinite. If the characteristic of the
field is zero one finds a copy isomorphic to Q the rational numbers by observing that
all “integer” multiples of 1 must be in the field and that the field must be closed under
division. For finite fields – and generally for fields of positive characteristic – one can
always find a subfield of the type encountered in Example 3.

Lemma 7 Let K be a finite field of characteristic p. The prime subfield of K is isomor-
phic to IFp, the finite field with p elements.

Proof. We represent IFp as {0, 1, 2, . . . , p− 1} and define a map into K as

ϕ : IFp 7→ K, r 7→ r · 1 = 1 + . . .+ 1︸ ︷︷ ︸
r -times

where 1 is the multiplicative unit in K and + denotes addition in K.
One easily checks that ϕ is additive and multiplicative, thus a field homomorphism. To
show that the field IFp is embedded into K it remains to show that the map is injective.
Assume on the contrary that for some p > r > s ≥ 0 we have ϕ(r) = ϕ(s). Put
c = r − s > 0. By the definitions of r and s one can consider c as an element of IF∗p and
thus it has a multiplicative inverse c−1 in IFp. We obtain

ϕ (1) = ϕ
(
c · c−1

)
= ϕ (c) · ϕ

(
c−1
)

= (ϕ (r)− ϕ (s)) · ϕ
(
c−1
)

= 0.

However, by the definition of ϕ one has ϕ(1) = 1 6= 0 since K is a field. Because of
this contradiction, ϕ is an isomorphism between IFp and the image of the homomorphism
Im(ϕ) ⊂ K.
This isomorphism proves that Im(ϕ) is a subfield of K (the image contains 0 and 1 and
the field operations are inherited). Since IFp has no non-trivial subfield, it is its own
prime subfield and the argument carries over to Im(ϕ). So Im(ϕ) is the prime field ofK. 2

We already used the notation IFp as if this would be a unique field. Indeed this holds
true up to isomorphism.

Corollary 8 Let p be a prime. Up to isomorphism there is only one finite field with p
elements, denoted by IFp.

The proof follows from Lemma 7 by observing that IFp is isomorphic to its own prime
subfield.
Finite fields with a prime number of elements are often referred to as prime fields.
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Exercise 9 Let K be a field of characteristic p, where p is prime. Show that for any
integer n one has

(a+ b)p
n

= ap
n

+ bp
n

for all a, b ∈ K.

1.3 The additive structure of finite fields

So far we do not know whether fields other than IFp exist but we can find criteria a more
general finite field has to satisfy. That reduces the search space and actually gives rise to
a construction method.

In the Section ?? we considered extension fields as vector spaces over their subfield. This
approach helps to determine the additive structure of finite fields and limits the possible
sizes for which finite fields can exist.

Let K be a finite field of characteristic char(K) = p, |K| > p. By Lemma 7 there exists
a subfield of K isomorphic to IFp. For ease of notation we identify this field with IFp.

K is a vector space over IFp and so there must exist a basis of linearly independent
elements a1, . . . , an for some dimension n. This is the main observation leading to the
proof of the following lemma.

Lemma 10 Let K be a finite field of char(K) = p. There exists an integer n ≥ 1 so that
|K| = pn.

Proof. Consider K as vector space over IFp. Let dimIFp(K : IFp) = n and let {ξ1, . . . , ξn}
be a basis.

Then every element a ∈ K can be represented via a linear combination of the basis
elements with coefficients in IFp. So there exist c1, . . . , cn ∈ IFp satisfying a = c1ξ1 + · · ·+
cnξn.

Each ci can have p different values, since we consider linear combinations over a basis all
these pn elements in K are distinct. Again by the property of a basis each element of K
can be represented as linear combination this way. Thus |K| = pn. 2

So for any finite field the number of elements must be a prime or a prime power. E.g.
there exists no finite field with 6 elements since 6 is not a prime or prime power. In the
following q denotes a prime power q = pn.

We also get conditions on the relative sizes of subfields.

Lemma 11 Let L be a finite field with |L| = pn and let K be a subfield of L.

There exists an integer n > 1 so that |K| = pm and m|n.

The extension degree of L over K is [L : K] = n/m.
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Proof. Left to the reader (given as homework at the end of this section). 2

We know have a necessary condition on the number of elements in a finite field. The
following example studies one finite field which is not a prime field.

Example 12 The number 4 is a prime power, so there could be a finite field with 4
elements. What would IF4 = IF22 look like? For the moment let us assume that IF4 exists
(we will later see that this is indeed the case).
Let 0 be the additive and 1 be the multiplicative neutral element. Let a be one of the other
two elements. Since IF4 is closed under addition the other element must equal a + 1, so
IF4 = {0, 1, a, a+ 1}. We now give the addition table which follows easily from the fact
that the characteristic is 2, thus x + x = 0 for any x ∈ IF4. Since every element must
appear in each row and each column of the table we obtain a · a = a+ 1 and consequently
a · (a+ 1) = 1.

+ 0 1 a a+ 1

0 0 1 a a+ 1
1 1 0 a+ 1 a
a a a+ 1 0 1

a+ 1 a+ 1 a 1 0

· 0 1 a a+ 1

0 0 0 0 0
1 0 1 a a+ 1
a 0 a a+ 1 1

a+ 1 0 a+ 1 1 a

We were able to fill the tables completely using just necessary conditions. We note that a
basis of IF4 over IF2 could be given by {1, a} or likewise by {1, a+ 1}.
But: do these tables actually form a field? To answer this we need to check associativity
of + and · and prove that the distributive laws hold. Since the number of elements is very
small we could check these by explicitly considering all possible cases. The next section
provides us with a better understanding of finite fields and their multiplicative structure
so that we skip this tedious work here.

Let ξ1, ξ2, . . . , ξn be a basis of the finite field K with |K| = pn over IFp. We can state K
as a set as

K = {a1ξ1 + a2ξ2 + · · ·+ cnξn|ai ∈ IFp for 1 ≤ i ≤ n}.
It is very easy to add two field elements by using the vector space structure:
Let a =

∑n
i=1 aiξi and b =

∑n
i=1 biξi be elements of K. Their sum is given by

a+ b =
n∑
i=1

(ai + bi)ξi,

where ai + bi is computed as an element of IFp, i.e. modulo p.

However, we are not able to multiply in this representation unless we know the value of
ξi · ξj expressed in this basis for all 1 ≤ i, j ≤ n. Apparently one can store all n(n+ 1)/2
results of the multiplication of the basis vectors and perform multiplications with table
lookups but that seems rather tedious. The following section suggests a representation
which is particularly suitable for multiplications and Section 1.6 gives the representation
which we will use for most applications.

Exercise 13 Prove Lemma 11. Hint: consider L as vector space over K and follow the
proof of Lemma 10.
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1.4 The multiplicative structure of finite fields

The previous section gave us insight in the number of elements of a finite field and
determined the additive structure. Given a basis of a finite field K over its prime subfield
we are able to perform additions. We now turn our attention to the study of K∗, the
multiplicative group of K.

Lemma 14 Let K be a finite field with |K| = pn. The multiplicative group K∗ = K \{0}
is cyclic.

Proof. For ease of notation put q = pn. Since K is a field, K∗ consists of all elements of
K but 0. So |K∗| = q − 1.
According to the Lagrange Theorem for each a ∈ K we have aq−1 = 1 and ord(a)|q − 1.
If K∗ is cyclic then there must exist at least one element g with ord(g) = q − 1.
Let e be the exponent of K∗. By the definition of e the order of every element divides e,
i.e. ae = 1 for all a ∈ K∗. This implies that all a ∈ K∗ are roots of F (x) = xe − 1. Thus
F (x) is a non-zero polynomial of degree e which has at least q − 1 different roots which
implies q − 1 ≤ e by Corollary ??.
Since the exponent of a group divides its order we have e|q − 1 and thus e ≤ q − 1.
Together this gives e = q− 1, i.e. the exponent is the full group order which implies that
there is at least one element of order q − 1. 2

Definition 15 (Primitive element)
Let K be a finite field. A generator of K∗ is called primitive element.

An obvious consequence of Lemma 14 is the following:

Corollary 16 Every finite field contains at least one primitive element.
More precisely there are exactly ϕ (q − 1) primitive elements.

This gives a second possibility of representing finite fields. Let g be a primitive element
of K then

K = {0, 1, g, g2, . . . , gq−2} = {0} ∪ 〈g〉.
In this representation it is very easy to multiply two elements a = gi and b = gj as

a · b = gi · gj = gi+j,

where the exponent i + j is taken modulo q − 1. However, we don’t know how to add a
and b. Assume j ≤ i. We observe that

a+ b = gi + gj = gj(gi−j + 1)

and so it would be enough to tabulate all q − 1 values of gk + 1, 1 ≤ k ≤ q − 2 expressed
as a power of g to be able to add in this representation.
The lemma also allows to obtain properties of power maps and find possible orders.

Corollary 17 Let K be a finite field with |K| = q elements. There exist elements of
order k if and only if k|(q − 1).
The power map τ : K → K; a 7→ ak is a bijection if and only if gcd(k, q − 1) = 1.
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The following section deals with polynomials over finite fields. We obtain necessary
knowledge to find a representation of finite fields that allows to perform addition and
multiplication without keeping a big table.

Exercise 18 a) Corollary 16 also holds for the prime fields IFp. Find primitive elements
of IF5, IF7, IF11, IF13 and IF17.

b) State all primitive elements of IF7.

c) Let IF∗16 = 〈g〉. State all primitive elements in terms of g.

d) Prove Corollary 16.

1.5 Polynomials over finite fields

This section studies polynomials over finite fields. In Section ?? we introduced many
properties of polynomials over a field. We refer to that section for general background
and concentrate here on the case that the coefficients come from a finite field.
We recall the definition of an irreducible polynomial (Definition ??). A polynomial f(x) ∈
K [x] is irreducible if it cannot be written as a product of polynomials of lower degree
over the same field, i.e. u(x)|f(x) implies u is constant or u(x) = f(x). Otherwise it is
called reducible.

Example 19 Consider the following polynomials in IF2[x]: f1(x) = x, f2(x) = x2 + 1,
f3(x) = x2 + x+ 1, and f4(x) = x4 + x2 + 1.

a) Apparently f1 is irreducible.

b) A non-trivial factor of f2 must be linear, one sees that (x+ 1)|f2(x), actually f2(x) =
(x+ 1)2.

c) There are only two linear polynomials, x and x + 1, over IF2. One easily checks that
none of them divides f3, so f3 is irreducible.

d) The last polynomial is not divisible by a linear factor. However, it is not irreducible
since f4(x) = (x2 + x + 1)2 = f 2

3 (x). which cannot be factored further since f3 is
irreducible.

For functions over the reals, the derivative gives information about the slope of the tangent
in a point. In the discrete setting of finite fields we lose this interpretation but we can
still define the derivative of a polynomial.

Definition 20 Let K be a field and f(x) =
∑n

i=0 fix
i ∈ K[x] be a polynomial. The

derivative f ′ of f is given by

f ′(x) =
n∑
i=1

i · fixi−1.

Note that if K has characteristic p then the derivative of all terms xmp vanishes.
One can show that for this derivative the usual rules hold.
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Corollary 21 Let f, g ∈ K[x]. One has

(f + g)′ = f ′ + g′, (1.1)

(f · g)′ = f ′ · g + f · g′, (1.2)

(fa)′ = afa−1 · f ′. (1.3)

Exercise 22 a) Let f(x) = x17 + 3x15 − 2x12 + x11 − x10 − 2x8 + x5 + 3x2 + 2 ∈ IF5[x].
Compute the derivative f ′ of f .

b) Let f ∈ K[x] be a polynomial. Show that if α is a multiple root of f then (x −
α)| gcd(f, f ′).

c) Let f ∈ K[x] be a polynomial. Show that gcd(f, f ′) ∈ K∗ if and only if f has no
multiple roots in K or any of its extension fields.

1.6 Polynomial representation of finite fields

In this section we show how to construct finite fields with pn, n > 1, elements by using
an irreducible polynomial of degree n over IFp. The same considerations can be used to
construct an extension field of K with |K| = pm in which case the polynomial must be
irreducible over K.
We start by investigating relations between a finite field and a subfield of it.

Lemma 23 Let K,L be finite fields with K ⊂ L, |K| = q, |L| = qn.
Every element α ∈ L is a root of a uniquely defined monic polynomial mα ∈ K [x],
deg mα ≤ n. This polynomial mα satisfies that if α is a root of some polynomial f ∈ K [x]
then mα|f .

Proof. We start by considering L as a vector space over K. Since the dimension
dimK(L : K) is n, any n+ 1 or more elements are linearly dependent.
So the elements 1, α, α2, . . . , αn are linearly dependent and there exist coefficients
c0, . . . , cn ∈ K so that c0 + c1α + c2α

2 + · · ·+ cnα
n = 0.

We just constructed a polynomial f(x) =
∑n

i=0 cix
i ∈ K[x] of degree n such that f(α) =

0. This proves the existence part of the lemma.
Now that we know that there is at least one polynomial of degree ≤ n over K which has
α as root and since we can make each polynomial monic as K is a field, let mα be the
monic polynomial of minimal degree so that mα (α) = 0. From the first part we know
deg(mα) ≤ deg(f) ≤ n.
We first note that mα must be irreducible because if it would split as mα = a · b with
deg(a), deg(b) > 1 would give 0 = mα(α) = a(α) · b(α) and because there are no zero
divisors either a(α) = 0 or b(α) = 0 which contradicts the minimality of the degree of
mα.
Let f(α) = 0, and let r(x), deg(r) < deg(mα) be the remainder of f by division by mα,
i.e. f(x) = q(x)mα(x) + r(x). Evaluating both sides at α gives the identity

0 = f(α) = q(α)mα(α) + r(α) = q(α) · 0 + r(α) = r(α),
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so r(α) = 0. Again by the minimality of deg(mα) we obtain r(x) = 0 which means mα|f .
2

Definition 24 (Minimal polynomial)
Let K be a field, L be a finite extension field of K and α ∈ L. The polynomial mα ∈ K[x]
constructed in Lemma 23 is called the minimal polynomial of α over K.

The prime fields IFp are constructed as residue classes of the integers modulo a prime p.
We have seen that the ring of polynomials over a field shares many similarities with the
ring of integers and so we consider the polynomial ring modulo an irreducible polynomial.

Theorem 25 Let K be a finite field and let L = K[x]/fK[x] be the residue classes
modulo a polynomial f ∈ L[x].
L is a field if and only if f is irreducible.

Proof. In Example ?? we considered the case K = IF2 and f(x) = xn + 1 in detail and
showed that IF2[x]/(xn + 1)IF2 is a commutative ring with unity. The same proof works
for any field K and any polynomial f .
Let deg(f) = n. Like in the example we represent each residue class in L by the poly-
nomial of smallest degree in it L = {a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 | ai ∈ K}. Given

that L is a commutative ring with unity for any field K and any polynomial f it remains
to show the equivalence

L is a field ⇐⇒ f is irreducible.

Let f be irreducible and let 0 6= a(x) ∈ K[x] be a polynomial of degree deg(a) < n. In
K[x] we have gcd(a(x), f(x)) = 1 and Bézout’s identity ?? leads to a representation

1 = a(x)u(x) + f(x)v(x), with deg(u) < n.

This implies (a(x))−1 ≡ u(x) mod f(x) and because of the degrees, a and u are both
representatives of classes in L and we obtain the identity of classes (a(x))−1 = u(x).
To prove the other implication assume on the contrary that f splits as f(x) = g(x) ·h(x),
with 1 ≤ deg(g), deg(h) < n. Because of the degrees, g and h are representatives of their
respective classes in L and they both do not represent the class of 0. However, we have
g · h = f ≡ 0 mod f and thus g · h = 0 in L which contradicts that fields do not have
zero divisors. 2

This theorem is the most important tool to construct finite fields of cardinality pn with
n > 1. All we need is to find is an irreducible polynomial of degree n over IFp. Let us
first consider some examples.

Example 26 Let K = IF2.

a) The polynomial f(x) = x is obviously irreducible but the residue class field
IF2[x]/xIF2[x] ∼= {a0 ∈ IF2} is isomorphic to the field IF2 itself.
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b) Consider f(x) = x2 + 1. We know from Example 19 that f(x) = (x + 1)2 is not
irreducible. Consider the addition and multiplication tables modulo f .

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x 1 x+ 1

x+ 1 0 x+ 1 x+ 1 0

Since (x+ 1) · (x+ 1) = 0 this is not a field but only a ring.

c) Let f(x) = x2 + x+ 1; f is irreducible. By the previous lemma, IF2[x]/f IF2 is a field.
Given that the number of elements in

L = IF2[x]/(x2 + x+ 1)IF2 = {a0 + a1x|ai ∈ IF2, 0 ≤ i ≤ 1}

is 4 we have that L is a finite field with 4 elements. In Example 12 we investigated
what the field IF4 would look like. Note that the addition and multiplication tables we
presented there apply directly to L with a representing the class of x and so we have
now established that they define addition and multiplication in IF4.

Exercise 27 a) Show that h(x) = (x3 + x + 1) ∈ IF2[x] defines a field with 8 elements.
Give addition and multiplication tables of IF8

∼= IF2[x]/hIF2[x].

b) Let IF4 be defined using the irreducible polynomial f(x) = x2 + x + 1. Show by direct
inspection that k(y) = (y3 + y + 1) has no roots over IF4.

1.7 Existence and uniqueness of finite fields

We have now obtained a way of constructing finite fields by using irreducible polynomials
over prime fields and mentioned that the same construction can also be used for an
arbitrary base field. This raises the need to question whether the constructed fields are
the same and whether we can always find an irreducible polynomial of the desired degree.
This section is rather technical in nature but establishes a major result towards proving
the existence and uniqueness of finite fields of prime power order.
The following definition and lemma hold in the context of arbitrary fields.

Definition 28 (Splitting field)
Let K be a field and let f(x) ∈ K[x] be a polynomial. The splitting field of f is the
smallest field extension L of K so that f splits into linear factors in L[x].

We state the following lemma without proof. It is an important piece in the construction
of finite fields but its proof is rather technical.

Lemma 29 Let K be a field and let f(x) ∈ K[x] be a polynomial. The splitting field of
f exists and is unique up to isomorphism.

Example 30 a) The splitting field of f(x) = x+ 1 ∈ IF2[x] is IF2 itself since f is linear.
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b) The splitting field of g(x) = x2 + x + 1 is IF4 – by construction the class of x in
L = IF2[x]/gIF2[x] is a root of g. To see this consider g(y) = y2 + y + 1 as polynomial
in L[y] and note that we compute modulo x2 + x+ 1 in L

(y + x)(y + x+ 1) = y2 + (x+ x+ 1)y + x2 + x = y2 + y + 1 = g(y).

c) Put h(x) = (x3 + x + 1) ∈ IF2[x]. This polynomial is irreducible over IF2 and it
thus allows to define a field with 8 elements as IF8

∼= IF2[x]/hIF2[x]. By the same
considerations as above the splitting field of h is IF8.

d) Put j(x) = (x2 + x + 1)(x3 + x + 1) ∈ IF2[x]. Over IF2 the polynomial splits but not
into linear factors. As seen right before the first factor splits in IF4 while the second
one splits only in IF8. We know from Lemma 11 that IF4 is not a subfield of IF8 as
2 - 3 and so the splitting field of j must be IF26, the smallest extension field of IF2

containing both IF22 and IF23.

We now provide a reducible polynomial which is very important for the existence proof
of finite fields.

Lemma 31 Let f(x) = xp
n − x ∈ IFp[x] for some integer n. The splitting field of f is a

finite field K with |K| = pn elements and f splits as

xp
n − x =

∏
a∈K

(x− a).

Proof. We use the result of Exercise 22 c that a polynomial f has no multiple roots if
and only if gcd(f, f ′) = 1 when made monic. Here f ′(x) = pnxp

n−1 − 1 = −1 since we
are working in a field of characteristic p and thus gcd(f, f ′) = 1. Put q = pn.
The splitting field K of f exists by Lemma 29 and it contains the set S = {a ∈ K|aq = a}.
We just showed |S| = q = pn. We now show that S is a subfield of K and by the
minimality of the splitting field we obtain that S = K is the splitting field of f .
The elements 0 and 1 are in S since they are roots of f .
Let a, b ∈ S. By Exercise 9 we have

(a− b)q = aq + (−b)q = aq − bq = a− b and thus (a− b) ∈ S,

where the second equality holds apparently in odd characteristic while in characteristic
2 there is no difference between + and −. The third equality uses that a, b ∈ S.
The respective considerations for the multiplicative group are even easier. Let a, b ∈ S
then (a

b

)q
=
aq

bq
=
a

b
and thus

a

b
∈ S

and so indeed S is a subfield of K. 2

We now have all the knowledge needed to prove that finite fields of any prime power
order q exist and that they are unique up to isomorphisms.

Theorem 32 (Existence and uniqueness of finite fields)
For any prime p and any natural number n there exists a finite field with pn elements.
Every field with pn elements is isomorphic to the splitting field of f(x) = xp

n − x over
IFp.
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Proof. We start by noticing that for n = 1 the theorem is true as IFp ∼= ZZ/pZZ exists
and is unique up to isomorphism by Corollary 7.
Obviously the polynomial f(x) = xp

n − x ∈ IFp[x] can be stated for any prime p and
integer n. The existence and uniqueness of a field with pn elements follows from the
uniqueness of the splitting field of a polynomial, Lemma 29, and Lemma 31 showing
that the splitting field of f(x) is a finite field with pn elements. 2

It is also easy to give the complete list of subfields of a finite field IFq and the relations
between the subfields by using Lemma 11. This is best done in a Hasse-diagram in which
the largest field, in this case IFq, is situated in the top row. The next row contains the
direct subfields of IFq, each of then connected with a line to IFq etc. The bottom level
contains only the prime subfield IFq.

Example 33 Consider the finite field IF330. By Lemma 11 any subfield IF3m must satisfy
m|30 and thus there are only the following subfields: IF3, IF32 , IF33 , IF35 , IF36 , IF310 and IF315.
This leads to the following Hasse-diagram:

IF330

IF36

xxxxxxxx

FF
FF

FF
FF

IF310 IF315

FFFFFFFF

xx
xx
xx
xx

IF32

xxxxxxxx

FF
FF

FF
FF

IF33 IF35

FFFFFFFF

xx
xx
xx
xx
x

IF3

This easily allows to read off that IF35 is a subfield of IF310 , IF315 and IF330 but not of IF36

or any field on the same or a lower level.

Exercise 34 State all subfields of IF224 and their relations in a Hasse-diagram.

1.8 Construction of finite fields

We have obtained that for any prime p and any natural number n there exists a finite
field with pn elements. We have a description of this field as splitting field of xp

n − x;
we also learned how to define a field as the ring of polynomials modulo an irreducible
polynomial; and starting from an extension field we defined the minimal polynomial of
an element – which is an irreducible polynomial. This section highlights the connections
between these approaches.

Definition 35 Let K be a field, let L be an extension field of K, and let θ ∈ L. The
smallest extension field of K containing θ is denoted by K(θ). It is called the field obtained
by adjoining θ to K.

Example 36 a) The first example does not deal with finite fields but shows that we know
the concept of adjoining elements to fields from other contexts.

IR(i) = {a+ b · i | a, b ∈ IR} ∼= C .
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b) Let α be a root of j(x) = (x2 + x + 1)(x3 + x + 1) in IF26. Depending on whether
α2 + α + 1 = 0 or α3 + α + 1 = 0 we have IF2(α) ∼= IF4 or IF2(α) ∼= IF8.

We now highlight the connection between constructing fields by adjoining elements from
extension fields and by using the ring of polynomials modulo an irreducible polynomial.

Lemma 37 Let θ ∈ L and let mθ(x) be the minimal polynomial of θ over K and
deg(mθ) = m. We have

1. K(θ) ∼= K[x]/mθK[x],

2. dimK(L : K) = m, a basis of K(θ) over K is given by {1, θ, θ2, . . . , θm−1},

3. For every α ∈ K(θ) there exists a minimal polynomial mα(x) ∈ K[x], with
deg(mα)|m.

Proof.

1. The evaluation at θ map τ : K[x]→ K(θ), f 7→ f(θ) is a ring homomorphism. The
kernel of this map Ker(τ) consists of the elements mapped to 0 in K(θ)

Ker(τ) = {h(x) ∈ K[x] | h(θ) = 0} = (mθ(x)) ,

where (mθ(x)) denotes the ideal generated by mθ (that is all multiples of mθ(x) in
K[x]).

According to Theorem ?? the image of τ is isomorphic to K[x]/(Ker(τ)) ∼= Im(τ).
The set Im(τ) contains θ (as image of τ(x) = θ). Therefore K(θ) = Im(τ).

2. From the first part we have that α ∈ K(θ) is in the image of τ and can thus be
represented as f(θ) for some f ∈ K[x]. Since all polynomials are reduced modulo
mθ it is enough to consider polynomials f with deg(f) < m. So α equals a linear
combination of 1, θ, . . . , θm−1 with coefficients from K and so each element is a
linear combination of 1, θ, . . . , θm−1.

To show that 1, θ, . . . , θm−1 form a basis we need to show that they are linearly
independent over K. Assume on the contrary that there would be coefficients
ai ∈ K, not all ai = 0 for 0 ≤ i < m so that a0 + a1θ + · · · + am−1θ

m−1 = 0. The
polynomial h(x) =

∑m−1
i=0 aix

i would have θ as root and strictly lower degree than
m = deg(mθ) which contradicts the definition of minimal polynomial.

3. According to Definition 24, α has a minimal polynomial over K. We have the
following inclusion of finite extension fields K ⊆ K(α) ⊆ K(θ). According
to Lemma 11 the degrees of the extension fields divide each other leading to
deg(mα)| deg(mθ) = m.

2

If we use an irreducible polynomial f of degree n to define an extension field there are
n different roots of f over the splitting field which can be adjoined to the ground field.
The following corollary which follows from the previous lemma shows that all choices are
isomorphic.

13



Corollary 38 Let f(x) ∈ K[x] be irreducible and let L be the splitting field of f over K.
Let α and β be roots of f(x) over L.

We have K(α) ∼= K(β).

This shows that all m roots have the same effect on the splitting field. This is no surprise
since we work modulo f(x) and thus consider all m roots simultaneously.

Lemma 39 Let f(x) ∈ IFq[x] be irreducible and let α be a root of f(x) in some extension
field IFqm. If a polynomial h(x) ∈ IFq[x] also has α as root, h(α) = 0 then we have that
f(x)|h(x).

Proof. According to Lemma 23 the minimal polynomial of α divides any polynomial
h(x) with h(α) = 0. Let LT (f) = a be the leading coefficient of f . The polynomial
a−1·f is monic and irreducible with root α and thus equals the minimal polynomial of α. 2

Lemma 40 Let f(x) ∈ IFq[x] be irreducible over IFq of deg(f) = m. Then f(x) divides
xq

n − x if and only if m|n.

Proof. Let α = α1, α2, . . . , αm be the roots of f(x) in the splitting field L ∼= IFqm of f
over IFq.

If f(x) | xqn − x then αq
n

= α, and so L is a subfield of IFqn .

Since [L : IFq] = m and [IFqn : IFq] = n one must have m|n by Lemma ??.

If m|n then IFqm ⊆ IFqn and so α ∈ IFqn and satisfies αq
n

= α which implies
xq

n ≡ x mod (x− α). This holds not only for α but for all roots αi, 1 ≤ i ≤ m of f . By
the Chinese Remainder Theorem ?? it also holds modulo the product f(x) =

∏m
i=1(x−αi)

and thus f (x) |xqn − x. 2

We already know that an irreducible polynomial f of degree m over IFq can be used to
construct IFqm . Since IFqm is the splitting field of xq

m − x we now know that all roots of
f are contained in IFqm .

Corollary 41 Let f ∈ IFq[x] be irreducible of deg(f) = m. Then IFqm is the splitting
field of f .

The previous lemma is very useful as it states that every irreducible polynomial over IFp
of degree n is a factor of xp

n − x.

Even more is true:

Lemma 42 The polynomial f(x) = xq
n − x is product of all monic, irreducible polyno-

mials over IFq of degree dividing n.

14



Proof. This lemma holds as each irreducible polynomial of degree m with m|n divides f
by Lemma 40, the polynomials are co-prime, and every irreducible polynomial of degree
m|n constructs a subfield of IFqn and so its roots must satisfy f . 2

However, the degree of this polynomial grows very quickly so that it is not possible to
obtain irreducible polynomials by factoring it.
We know already that for any degree m and any finite field IFq there exists at least one
irreducible polynomial over IFq since the finite field IFqm exists and has dimension m over
IFq. Now we can compute the number of irreducible polynomials of a given degree.

Corollary 43 Let Nq(d) be the number of irreducible polynomials over IFq of degree d.
Then

qn =
∑
d|n

dNq(d).

In particular for all d and q we have Nq(d) > 0.

Corollary 38 shows that all roots (over some extension field) of a fixed irreducible poly-
nomial give rise to the same field if adjoined to the ground field. Since for each order
there is only one field up to isomorphism the resulting field is even independent of the
choice of the polynomial.

Corollary 44 Let f, g ∈ IFq[x] be irreducible, of the same degree deg(f) = deg(g). Then
their splitting fields are isomorphic.

Exercise 45 a) Find all irreducible polynomials of degree 1 and 2 over IF3 and verify
directly Lemma 42.

b) Verify directly Lemma 42 for n = 3 and q = 2.

1.9 Conjugates, trace and norm

This section investigates connections between the roots of an irreducible polynomial and
defines two important maps, the trace and the norm.

Lemma 46 Let f ∈ IFq[x] be irreducible of degree m. Then f has a root α in IFqm and
all roots of f in IFqm are different and given by

α, αq, αq
2

, . . . , αq
m−1 ∈ IFqm .

Proof. By Corollary 41 f splits completely over IFqm and it has m roots. Let β be some
root of f , we now show that then also f(βq) = 0. Let f(x) =

∑m
i=0 aix

i.

f(βq) = a0 + a1β
q + a2(β

q)2 + . . .+ am(βq)m, ai ∈ IFq ⇒ aqi = ai

= aq0 + aq1β
q + aq2(β

2)q + . . .+ aqm(βm)q

=
(
a0 + a1β + a2β

2 + . . .+ amβ
m
)q

= (f(β))q = 0q = 0.

This shows that with α also αq is a root and thus also αq
2
, . . . , αq

m−1
are roots of f(x).
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If any two of these powers would coincide, e.g. αq
i

= αq
j

for some 0 ≤ i < j ≤ m − 1,
then we would have αq

m−j+i
= αq

m
= α and α would satisfy a polynomial of degree

m− j + i < m which contradicts the definition of α as root of an irreducible polynomial
of degree m. 2

The roots are thus q-th powers of one-another.

Definition 47 (Conjugates)
Let IFqm be an extension field of IFq and let α ∈ IFqm.

The elements α, αq, αq
2
, . . . , αq

m−1
are called the conjugates of α.

We know the term “conjugates” from the complex numbers. Indeed there it refers to the
same concept:

Example 48 The field of complex numbers has degree [C : IR] = 2 over the reals and
we obtain C as C ∼= IR[x]/(x2 + 1)IR[x]. The roots of x2 + 1 are i =

√
−1 and −i.

For a0 + a1i ∈ C the conjugate is traditionally defined as (a0 + a1i) = a0 − a1i. So the
conjugate is obtained by changing the root of the irreducible polynomial.

Example 49 Let [IFqm : IFq] = m and let f(x) ∈ IFq[x] be irreducible of degree m and
let the roots of f(x) be β, βq, . . . , βq

m−1
. By Lemma 38 we have IFqm ∼= IFq[x]/f IFq[x] ∼=

IFq(β). Let α = a0 + a1β + a2β
2 + · · ·+ am−1β

m−1. The conjugate αq of α is given by

αq = aq0 + aq1β
q + a2β

2 + . . .+ aqm−1 (βq)m−1 , ai ∈ IFq

= a0 + a1β
q + a2 (βq)2 + . . .+ am−1 (βq)m−1

and so also in the case of finite fields the conjugates are obtained by changing the root in
the representation.

We note that computing q-powers is a homomorphism of the field to itself. In the context
of extension fields we need a more detailed definition.

Definition 50 (Automorphism of IFqm over IFq)
An automorphism of IFqm over IFq is an isomorphism of IFqm that leaves every element
of IFq invariant.

Note that it is not enough that the field IFq is kept invariant, each individual element
must remain fixed.

Lemma 51 The automorphisms of IFqm over IFq are exactly the maps σ0, σ1, . . . , σm−1,

where σi(α) = αq
i

for α ∈ IFqm and 0 ≤ i ≤ m− 1.
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Proof. The maps σi are field homomorphisms by Exercise 9.
For any 0 ≤ i ≤ m − 1 one has that the only element α with σi(α) = αq

i
= 0 is α = 0

and thus the maps are injective. Since they operate of finite sets of the same cardinality
they are also surjective and thus they are isomorphisms.
The elements of a ∈ IFq are exactly those elements in IFqm which satisfy aq = a and thus
each σi leaves any element of IFq fix.
On a finite set every isomorphism can be described as a polynomial. The field IFq is
defined as the set of roots of xq − x and so every automorphism of IFqm over IFq must be
a power of σ. Since σm = σ0 these are all possibilities. 2

Definition 52 (Frobenius automorphism)
The automorphism σ = σ0 is called the Frobenius automorphism. It operates by raising
each element to the q-th power.

Definition 53 (Trace)
Let α ∈ IFqm. The relative trace of α over IFq denoted by TrIFqm/IFq(α) is given by

TrIFqm/IFq(α) = α + αq + · · ·+ αq
m−1

.

If IFq = IFp is a prime field then TrIFpm/IFp is called the absolute trace or just trace. In
this case the index of Tr is often skipped.

With the notation from above the trace TrIFqm/IFq(α) of α is the sum of all conjugates of
α over IFqm . We now define the multiplicative analogue.

Definition 54 (Norm)
Let α ∈ L = IFqm and put K = IFq. The relative norm of α over IFq of α over K denoted
by NL/K(α) is given by

NL/K(α) = α · αq · . . . · αqm−1

.

Lemma 55 The images of the relative trace map and of the relative norm map are con-
tained in IFq

TrIFqm/IFq(α) ∈ IFq, NIFqm/IFq(α) ∈ IFq,

for all α ∈ IFqm.

Proof. Let mα(x) ∈ IFq[x] be the minimal polynomial of α over IFq and let mα(x) =∑r
i=0 aix

i for some r = [IFq(α) : IFq]. By Lemma 37 we have r|m and mα defines an
extension field IFqr of IFq. Lemma 46 we have

m−1∏
i=0

(
x− αqi

)
=

r−1∏
i=0

(
x− αqi

)
·
r−1∏
i=0

(
x− αqi+r

)
· . . . ·

r−1∏
i=0

(
x− αq

i+r(mr −1)
)

=
r−1∏
i=0

(
x− αqi

)
· . . . ·

r−1∏
i=0

(
x− αqi

)
︸ ︷︷ ︸

m
r

times

= mα(x)
m
r
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Since mα ∈ IFq[x] also its m
r

-th power has all coefficients in IFq. The coefficient of the

second highest term equals −(α + αq + · · · + αq
m−1

) = −Tr(α) while the constant term
equals the norm.

By comparison we obtain

rTrIFqm/IFq(α) = −mam−1 ∈ IFq

and

NIFqm/IFq(α) = a
m
r
0 ∈ IFq.

2

We note some properties of the trace.

Lemma 56 Let L be a finite extension of K with [L : K] = m and let α, β ∈ L, c ∈ K.
For the relative trace TrL/K we have:

1. TrL/K(α + β) = TrL/K(α) + TrL/K(β),

2. TrL/K(c · α) = c · TrL/K(α),

3. TrL/K(c) = m · c,

4. TrL/K (αq) = TrL/K(α).

Proof. Given below as homework. 2

One also has the corresponding properties of the norm.

Lemma 57 Let L be a finite extension of K with [L : K] = m and let α, β ∈ L, c ∈ K.
For the relative norm NL/K we have:

1. NL/K(α · β) = NL/K(α) · NL/K(β),

2. Im(NL/K) = K and Im(NL/K|F∗ ) = K∗

3. NL/K(c) = cm,

4. NL/K (αq) = NL/K (α).

Proof. Given below as homework. 2

Exercise 58 a) Prove Lemma 56 by just using the definition.

b) Prove Lemma 57 by just using the definition.
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1.10 Irreducible polynomials

As stated before it is too expensive to factor xq
m − x over IFq to find an irreducible

polynomial of degree m over IFq and to construct the extension field IFqm . A more careful
analysis of the number Nq(d) of irreducible polynomials of degree d over IFq given in
Corollary 43 gives the probability that a randomly chosen polynomial of degree d is
irreducible.
In this section we state a criterion to determine whether a given polynomial is irreducible.
There is a vast literature on factorization of polynomials over finite fields and on con-
structing irreducible polynomials. We would like to refer the interested reader to a few
books covering this topic.

• H. Cohen, “A Course in Computational Algebraic Number Theory”, Springer

• J. von zur Gathen and J. Gerhard, “Modern Computer Algebra”, Cambrigde Uni-
versity Press.

• M. Pohst and H. Zassenhaus, “Algorithmic Algebraic Number Theory”, Cambridge
University Press.

and the books by Lidl and Niederreiter and by Shoup mentioned in the introduction to
this chapter.
We present here the Rabin test which allows to test whether a polynomial is irreducible.

Lemma 59 (Rabin test)
The polynomial f(x) ∈ IFq[x] of degree deg(f) = m is irreducible if and only if

f(x)
∣∣xqm − x

and for all divisors d|m one has

gcd(f(x), xq
d − x) = 1.

Proof. We first note that all conditions hold for an irreducible polynomial of degree m.
It remains to be shown that they are sufficient. Let f split into factors f = f1 · · · fr over
IFq, where r ≥ 1.
By Lemma 42 xq

m − x is the product of all irreducible polynomials of degree dividing m.
So if the first property holds we must have deg(fi)|m for 1 ≤ i ≤ r. If r > 1 the degree
deg(f1) equals one of the d in the second round of tests and f1|xq

d − x for this d. So f is
only if also the second property holds.
Since any factor of f must lead to a non-trivial gcd for some d we also have that this
condition is sufficient. 2

For efficiency it might be interesting to note that one can release the second property to
testing only that for all prime divisors `|m one has

gcd(f, xq
m/` − x) = 1.

For a random polynomial it is likely that the condition gcd(f, xq
d − x) = 1 fails for

some small d so that it is computationally more efficient to have an early abort after it.
If, however, the candidate polynomial is likely to be irreducible and thus all checks are
expected to be done anyway this observation saves running time.
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Example 60 Find an irreducible polynomial of the form x3 − a over IF7. This can still
be done by a naive approach since a polynomial of degree 3 is irreducible if and only if it
does not have a root. In this case if a 6= 0, 1,−1. So x3 − 2 is irreducible.
Use of the Magma online calculator available at
http://magma.maths.usyd.edu.au/calc/ makes it easy to implement the Rabin test
and it even comes with a built-in in function IsIrreducible.

Irreducible polynomials with only two terms as considered in this example are interesting
for constructing finite fields. In low weight polynomials have special names.

Definition 61 (Binomial, trinomial, pentanomial) A polynomial of the form xn +
a0 with two non-zero coefficients is called a binomial.
A polynomial of the form xn + amx

m + a0 with three non-zero coefficients is called a
trinomial.
A polynomial of the form xn + amx

m + alx
l + akx

k + a0 with five non-zero coefficients is
called a pentanomial.

We first note that over IF2 there cannot be an irreducible binomial as 0 or 1 would be
a root. It is a bit more surprising that there cannot be an irreducible binomial of even
degree over IFn2 .
The following lemma considers irreducible binomials over arbitrary finite fields.

Lemma 62 Let n be prime. An irreducible binomial f(x) = xn + a0 of degree n over IFq
exists if and only if n|q − 1.

Proof. If n - q − 1 then the map τ : IFq → IFq; a 7→ an is a bijection by Corollary 17 and
thus every element a0 is an n-th power and any binomial of degree n has a linear factor
over IFq.
If, however, n|q − 1 then τ has a non-trivial kernel and each element in the image has
n pre-images. Choose a0 6∈ Im(τ) and so f has no linear factor over IFq. Then the last
property of the Rabin test holds since n is prime.
For the first property note that n|q−1 implies that there is some integer k with q = 1+kn
and thus qn− 1 = (1 + kn)n− 1 = 1 + nkn+

(
n
2

)
(kn)2 + · · · (kn)n− 1 = n2k` = n(q− 1)`

for some `.To show that f(x) = xn + a0 divides xq
n − x note

xq
n − x = x(xq

n−1 − 1) = x(xn(q−1)` − 1) ≡ x(a
(q−1)l
0 − 1) = x(1− 1) = 0 mod xn + a0

using aq−10 = 1. 2

1.11 Arithmetic in binary fields

In Section 1.6 we have seen that an extension field IFqn of IFq can be represented using a
polynomial basis. Let f(x) ∈ IFq[x] be an irreducible polynomial of degree n. Then we
have by Lemma 37 that

IFqn ∼= IFq[x]/f(x)IFq[x] =

{
n−1∑
i=0

aix
i + f(x)IFq[x]

∣∣ai ∈ IFq

}
.
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In this section we consider the special case q = 2 which is very important for applications,
particularly for hardware implementations. An advantage of such binary fields is that
additions are XORs and that in squarings no mixed terms need to be considered as by
Exercise 9 we have (a+ b)2 = a2 + b2.
For multiplications and squarings it is necessary to reduce the resulting polynomial of
degree ≥ n modulo the irreducible polynomial f(x) to obtain the unique remainder
modulo f of degree less than n.

Example 63 The polynomial f(x) = x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1 ∈ IF2[x]
is irreducible. To compute the product (x9 + x7 + x4 + x2 + 1) · (x8 + x6 + x5 + x3 + x2) in
IF210 we first compute the product in IF2[x] and then reduce the result modulo f(x). The
steps are as follows:

(x9 + x7 + x4 + x2 + 1) · (x8 + x6 + x5 + x3 + x2) =

x17 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

x7 · x10 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

(x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 +

+x8 + x7) + x14 + x13 + x12 + x11 +

+x10 + x4 + x3 + x2 =

x16 + x15 + x9 + x8 + x7 + x4 + x3 + x2 =

x6 · x10 + x15 + x9 + x8 + x7 + x4 + x3 + x2 =

x14 + x13 + x12 + x11 + x10 + x6 + x4 + x3 + x2 =

x4 · x10 + x13 + x12 + x11 + x10 + x6 + x4 + x3 + x2 =

= x9 + x8 + x7 + x5 + x3 + x2.

Note, that g(x) = x10+x3+1 is an irreducible polynomial of degree 10 over IF2. Reducing
modulo g has much easier iterations since x10 is replaced by only two terms x3 + 1. Since
g is sparse it also becomes useful to replace more than one power simultaneously.

(x9 + x7 + x4 + x2 + 1) · (x8 + x6 + x5 + x3 + x2) =

x17 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

x7 · x10 + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

(x10 + x7) + x14 + x13 + x12 + x11 + x10 + x4 + x3 + x2 =

x14 + x13 + x12 + x11 + x7 + x4 + x3 + x2 =

(x4 + x3 + x2 + x) · x10 + x4 + x3 + x2 =

x6 + x5 + x4 + x.

We deduce from this example that it is useful to choose irreducible polynomials with as
few terms as possible.

Lemma 64 For all n,m ∈ IN, n > 1 the binomial xn + xm ∈ IF2[x] is not irreducible.
More generally, there is no irreducible polynomial over IF2 with an even number of nonzero
terms.
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Proof. If m > 0 then xn + xm is divisible by xm and thus not irreducible. If m = 0 we
see that 1 is a root of xn + 1.
Consider f(x) =

∑2m
i=1 x

ki , where ki < ki+1 for all 1 ≤ i ≤ 2m− 1. If k1 > 0 we have that
xk0 divides f(x) while otherwise 1 is a root of it since we are working in characteristic 2. 2

As the example showed, there are extension degrees n for which there exists an irreducible
polynomial of degree n with only 3 nonzero terms. Polynomials with 3 nonzero terms are
called trinomials. To construct IF2n for a given n, it is best to use an irreducible trinomial
is one exists. Note that if an irreducible trinomial exists there is one xn + xm + 1 for
which m ≤ n/2.
By the lemma we know that there are no irreducible polynomials with 4 nonzero coeffi-
cients, so if no suitable trinomial exists one should search for an irreducible pentanomial.
It is conjectured that for all binary fields for which there is no irreducible trinomial one
can find an irreducible pentanomial. Even though this is not proven, all fields of crypto-
graphic interest have been checked. So in applications we can always find an irreducible
trinomial or pentanomial.
For a table of irreducible polynomials consult Gadiel Seroussi’s paper “Table of Low-
Weight Binary Irreducible Polynomials”.

Remark 65 For more details on the implementation of binary fields the reader is encour-
aged to check the literature for normal basis representations. A normal basis of IF2n over
IF2 is a basis of the form {θ, θ2, θ22 , θ23 , . . . , θ2n−1}. Note that for most values α ∈ IF2n

the conjugates of α do not form a basis, so normal elements are special.
An advantage of normal bases is that they lead to very fast squarings:

If a =
n−1∑
i=0

aiθ
2i then a2 =

n−1∑
i=0

ai−1θ
2i ,

where the index i of ai is considered modulo n. This means that a squaring can
be implemented as a cyclic shift of the coordinates from (a0, a1, . . . , an−1, an−2) to
(an−1, a0, a1, . . . , an−2). Likewise, squareroots can be implemented by a cyclic left-shift.
On the downside, in software multiplications are usually less efficient than in a poly-
nomial basis. So it depends on the application and in particular on the importance of
squarings in it whether a normal basis or a polynomial basis representation should be
chosen. In hardware implementation the situation is yet again different and normal bases
can be the clear winner.

Exercise 66 1. State all irreducible polynomials of degree 3 and of degree 4 over IF2.

2. The polynomial f(x) = x97+x6+1 is irreducible over IF2. We can use it to construct
IF297

∼= IF2[x]/f(x)IF2[x]. Compute (x86 + x25 + x13 + x4 + x+ x2 + 1) · (x83 + x31 +
x17 + x7 + x3) modulo f(x).

3. The polynomial g(x) = x89 +6 +x5 + x3 + 1 is irreducible over IF2. We can use it
to construct IF289

∼= IF2[x]/g(x)IF2[x]. Compute (x86 + x25 + x13 + x4 + x + x2 +
1) · (x83 + x31 + x17 + x7 + x3) modulo g(x). Compare the time you needed for the
multiplication in this exercise and in the previous one. Note that the previous one
deals with a larger finite field.
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1.12 Arithmetic in prime fields

There exists a vast amount of literature on fast implementations of prime fields. We do
not go into the details here but comment that to speed up modular reductions it is useful
to choose primes which are close to a power of 2, or even better close to a power of 2w,
where w is the word size, i.e. p = (2w)k − c, where c ∈ IN is small. This approach is
analogous to choosing irreducible trinomials in binary fields.

1.13 Arithmetic in optimal extension fields

Optimal extension fields (OEFs) are finite fields IFqn where the base field IFq and the
extension degree n are chosen such that arithmetic in IFq can be implemented particularly
fast. A common choice for the base field is IFq = IFp, a prime field, such that p fits
into the word size and is close to a power of two, i.e. p = PreviousPrime(2w), where
w is the word-size. The extension degree n is often chosen to be prime, particularly
in applications to elliptic curve cryptography – we will not go into the details here but
mention that Weil descent attacks on elliptic curves may apply when the extension degree
is not prime. As we have seen in the section on binary fields, it is interesting to work
with irreducible polynomials with few nonzero coefficients. If q is odd we can hope for
irreducible binomials.

Lemma 67 Let n and p be primes such that p ≡ 1 mod n. The binomial xn − a is
irreducible over IFp if and only if a is not an nth power in IFp.

Proof. If a is an nth power in IFp, i.e. there exists a b ∈ IFp with bn = a, then clearly
xn − a is not irreducible since b is a root.
If a is not an nth power then there is no root of f(x) = xn − a over IFp. The condition
n ≡ 1 mod p means that the nth roots of unity are in IFp, i.e. there are n elements
ui ∈ IFp, 1 ≤ i ≤ n with uni = 1. To fix notation let u1 = 1. Let α be a root of f(x)
over some extension field IFpm . The multiples uiα for 2 ≤ i ≤ n are distinct from α, are
defined over the same extension field IFpm and are also roots of f(x) because

(uiα)n = uni α
n = αn = a.

Since there are n of them they are exactly the roots of f(x) and so they are the
conjugates of α. This means that α is defined over a field of extension degree no less
than n, and so α is defined exactly over IFpn . We have IFpn ∼= IFp(α) ∼= IFp[x]/(xn−a)IFp.
2

Following this lemma, optimal extension fields are finite fields IFpn for which p is a prime
closely related to the word-size, n satisfies n ≡ 1 mod p and the extension field is con-
structed with an irreducible binomial f(x) = xn − a.
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