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Q sieve

Sieving small integers i > 0

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.



Q sieve

Sieving i and 611 + i for small i

using primes 2; 3; 5; 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.



Have complete factorization of

the “congruences” i(611 + i)

for some i’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd
�

611; 14 � 64 � 75� 24325472
	

= 47.

611 = 47 � 13.



Why did this find a factor of 611?

Was it just blind luck:

gcdf611; randomg = 47?

No.

By construction 611 divides s2�t2

where s = 14 � 64 � 75

and t = 24325472.

So each prime > 7 dividing 611

divides either s� t or s + t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s� t

and the other divided s + t.



Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1; 0; 4; 1); (6; 3; 2; 0); (1; 1; 2; 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.



This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n + 1) = 25315071;

4(n + 4) = 22335270;

15(n + 15) = 21315173;

49(n + 49) = 24325172;

64(n + 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(n+ 1)15(n+ 15)49(n+ 49)

is a square.



Plausible conjecture: Q sieve can

separate the odd prime divisors

of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n + i)

for i 2 �1; 2; 3; : : : ; y2
	

into products of primes � y.

Look for nonempty set I of i’s

with i(n + i) completely factored

and with
Q
i2I

i(n + i) square.

Compute gcdfn; s� tg where

s =
Q
i2I

i and t =
rQ

i2I
i(n + i).



How large does y have to be

for this to find a square?

Uniform random integer in [1; n]

has n1=u-smoothness chance

roughly u�u.

Plausible conjecture:

Q sieve succeeds

with y = bn1=uc
for all n � u(1+o(1))u2

;

here o(1) is as u!1.



More generally, if y 2
exp

q�
1
2c + o(1)

�
logn log logn,

conjectured y-smoothness chance

is 1=yc+o(1).

Find enough smooth congruences

by changing the range of i’s:

replace y2 with yc+1+o(1) =

exp

r�
(c+1)2+o(1)

2c

�
logn log logn.

Increasing c past 1

increases number of i’s but

reduces linear-algebra cost.

So linear algebra never dominates

when y is chosen properly.



Improving smoothness chances

Smoothness chance of i(n + i)

degrades as i grows.

Smaller for i � y2 than for i � y.

Crude analysis: i(n + i) grows.

� yn if i � y;

� y2n if i � y2.

More careful analysis:

n + i doesn’t degrade, but

i is always smooth for i � y,

only 30% chance for i � y2.

Can we select congruences

to avoid this degradation?



Choose q, square of large prime.

Choose a “q-sublattice” of i’s:

arithmetic progression of i’s

where q divides each i(n + i).

e.g. progression q � (n mod q),

2q � (n mod q), 3q � (n mod q),

etc.

Check smoothness of

generalized congruence i(n + i)=q

for i’s in this sublattice.

e.g. check whether i; (n+i)=q are

smooth for i = q � (n mod q) etc.

Try many large q’s.

Rare for i’s to overlap.



e.g. n = 314159265358979323:

Original Q sieve:

i n + i

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,

i 2 802458 + 994009Z:

i (n + i)=9972

802458 316052737309

1796467 316052737310

2790476 316052737311



Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(q�(n mod q))
n+q�(n mod q)

q
between 0 and n.

More careful analysis: Sublattices

are even better than that!

For q � n1=2 have

i � (n + i)=q � n1=2 � yu=2

so smoothness chance is roughly

(u=2)�u=2(u=2)�u=2 = 2u=uu,

2u times larger than before.



Even larger improvements

from changing polynomial i(n+i).

“Quadratic sieve” (QS) uses

i2 � n with i � pn;

have i2 � n � n1=2+o(1),

much smaller than n.

“MPQS” improves o(1)

using sublattices: (i2 � n)=q.

But still � n1=2.

“Number-field sieve” (NFS)

achieves no(1).



Generalizing beyond Q

The Q sieve is a special case of

the number-field sieve.

Recall how the Q sieve

factors 611:

Form a square

as product of i(i + 611j)

for several pairs (i; j):

14(625) � 64(675) � 75(686)

= 44100002.

gcdf611; 14 � 64 � 75� 4410000g
= 47.



The Q(
p

14) sieve

factors 611 as follows:

Form a square

as product of (i + 25j)(i +
p

14j)

for several pairs (i; j):

(�11 + 3 � 25)(�11 + 3
p

14)

� (3 + 25)(3 +
p

14)

= (112� 16
p

14)2.

Compute

s = (�11 + 3 � 25) � (3 + 25),

t = 112� 16 � 25,

gcdf611; s� tg = 13.



Why does this work?

Answer: Have ring morphism

Z[
p

14]! Z=611,
p

14 7! 25,

since 252 = 14 in Z=611.

Apply ring morphism to square:

(�11 + 3 � 25)(�11 + 3 � 25)

� (3 + 25)(3 + 25)

= (112� 16 � 25)2 in Z=611.

i.e. s2 = t2 in Z=611.

Unsurprising to find factor.



Generalize from (x2 � 14; 25)

to (f;m) with irred f 2 Z[x],

m 2 Z, f(m) 2 nZ.

Write d = deg f ,

f = fdx
d + � � �+ f1x

1 + f0x
0.

Can take fd = 1 for simplicity,

but larger fd allows

better parameter selection.

Pick r 2 C, root of f .

Then fdr is a root of

monic g = fd�1
d f(x=fd) 2 Z[x].

Q(r) O Z[fdr]
fdr 7!fdm�������!Z=n



Build square in Q(r) from

congruences (i� jm)(i� jr)

with iZ + jZ = Z and j > 0.

Could replace i� jx by

higher-deg irred in Z[x];

quadratics seem fairly small

for some number fields.

But let’s not bother.

Say we have a squareQ
(i;j)2S(i� jm)(i� jr)

in Q(r); now what?



Q
(i� jm)(i� jr)f2

d

is a square in O,

ring of integers of Q(r).

Multiply by g0(fdr)2,

putting square root into Z[fdr]:

compute r with r2 = g0(fdr)2�Q
(i� jm)(i� jr)f2

d .

Then apply the ring morphism

' : Z[fdr]! Z=n taking

fdr to fdm. Compute gcdfn;
'(r)� g0(fdm)

Q
(i� jm)fdg.

In Z=n have '(r)2 =

g0(fdm)2Q(i� jm)2f2
d .



How to find square product

of congruences (i� jm)(i� jr)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i� jm and

y-smooth fd norm(i� jr) =

fdi
d + � � �+ f0j

d = jdf(i=j).

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.


