Elliptic curves for applications

Tanja Lange
Technische Universiteit Eindhoven
part of this material is joint work
with Daniel J. Bernstein
University of Illinois at Chicago and
Peter Schwabe
Academia Sinica, Taiwan

Why ECC?

January 2010 news:
An academic team announces successful RSA-768 factorization.

Used ≈ 2 years of computation on ≈ 1000 CPU cores. "Factoring a 1024-bit RSA modulus would be about a thousand times harder."

Why ECC?

January 2010 news:
An academic team announces
successful RSA-768 factorization.
Used ≈ 2 years of computation on ≈ 1000 CPU cores.
"Factoring a 1024-bit RSA modulus would be about a thousand times harder."

Many users of 1024-bit RSA:
EFF SSL observatory study
http://eff.org/observatory
shows that more than 50% of all certificates are ≤ 1024-bit RSA.

1000 cores in perspective:
Typical laptop has 2 cores.

1000 cores in perspective:
Typical laptop has 2 cores.
A GTX 295 graphics card has 60 cores ("MPs").

1000 cores in perspective:
Typical laptop has 2 cores.
A GTX 295 graphics card has 60 cores ("MPs").

EPFL's 200-Playstation cluster has 1200 cores.

1000 cores in perspective:
Typical laptop has 2 cores.
A GTX 295 graphics card has 60 cores ("MPs").

EPFL's 200-Playstation cluster has 1200 cores.

Dan had an account on the TACC Ranger supercomputer, which has 62976 cores.

1000 cores in perspective:

Typical laptop has 2 cores.
A GTX 295 graphics card has 60 cores ("MPs").

EPFL's 200-Playstation cluster has 1200 cores.

Dan had an account on the TACC Ranger supercomputer, which has 62976 cores.

The Conficker/Downadup criminal-controlled botnet has ≈ 10000000 cores .

2003 Shamir et al.:
An attacker building ASICs
for 10 million USD can break RSA-1024 in a year.

2003 RSA company:
Move to 2048 bits "over the remainder of this decade."

2003 Shamir et al.:
An attacker building ASICs
for 10 million USD can break
RSA-1024 in a year.
2003 RSA company:
Move to 2048 bits "over the remainder of this decade."

2007 NIST: Same.

2003 Shamir et al.:
An attacker building ASICs
for 10 million USD can break RSA-1024 in a year.

2003 RSA company:
Move to 2048 bits "over the remainder of this decade."

2007 NIST: Same.

These recommendations
don't even take into account
batch algorithms
that save time in breaking many keys together.

A 1024-bit RSA key is built from two secret 512-bit primes.

There are $\approx 2^{503}$
possible 512-bit primes.
Can't imagine trying them all.
But the attacks are much faster: only $\approx 2^{80}$ calculations.

A 1024-bit RSA key is built from two secret 512-bit primes.

There are $\approx 2^{503}$
possible 512-bit primes.
Can't imagine trying them all.
But the attacks are much faster: only $\approx 2^{80}$ calculations.

2048-bit key: 1024-bit primes; $\approx 2^{1014}$ possible primes.
Still below modern standards!
Attacks: $\approx 2^{112}$ calculations.

A 1024-bit RSA key is built from two secret 512-bit primes.

There are $\approx 2^{503}$
possible 512-bit primes.
Can't imagine trying them all.
But the attacks are much faster: only $\approx 2^{80}$ calculations.

2048-bit key: 1024-bit primes; $\approx 2^{1014}$ possible primes.
Still below modern standards! Attacks: $\approx 2^{112}$ calculations.

3072-bit key: 1536-bit primes; $\approx 2^{1526}$ possible primes.
Attacks: $\approx 2^{128}$ calculations.

Attacks use "index calculus" = "combining congruences." Long history, including many major improvements:
1975, CFRAC;
1977, linear sieve (LS);
1982, quadratic sieve (QS);
1990, number-field sieve (NFS).
Also many smaller improvements.
Costs of these algorithms for breaking RSA-1024, RSA-2048: $\approx 2^{120}, 2^{170}$, CFRAC;
$\approx 2^{110}, 2^{160}, L S ;$
$\approx 2^{100}, 2^{150}, \mathrm{QS}$;
$\approx 2^{80}, 2^{112}$, NFS

1977: RSA is introduced.
1985: Miller proposes ECC.
Explains several obstacles
to congruence-combination attacks on elliptic curves.

Subsequent ECC history:
Improved algorithms, but still take exponential time.

Subsequent RSA history:
Continued security losses
from improved algorithms
for combining congruences.
Major loss in 1990 (NFS);
many smaller losses since then.

256-bit ECC keys match security of 3072-bit RSA keys.

When properly implemented,
256 -bit ECC is much faster
than 3072-bit RSA for
almost all real-world applications.
ANSI, IEEE, NIST issued
ECC standards ten years ago.
US government "Suite B" now prohibits RSA, requires ECC.

Electronic ID or travel documents in many European countries based on ECC. Some internet protocols (DNSCurve, CurveCP) use ECC.

The clock

y

This is the curve $x^{2}+y^{2}=1$.
Warning:
This is not an elliptic curve. "Elliptic curve" $=$ "ellipse."

Examples of points on this curve:

Examples of points on this curve: $(0,1)=" 12: 00$ ".

Examples of points on this curve:

$$
\begin{aligned}
& (0,1)=" 12: 00 " \\
& (0,-1)=" 6: 00 "
\end{aligned}
$$

Examples of points on this curve: $(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.

Examples of points on this curve: $(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00$ ".

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00$ ".
$(\sqrt{3 / 4}, 1 / 2)=$

Examples of points on this curve: $(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00$ ".
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.

Examples of points on this curve: $(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00$ ".
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=$

Examples of points on this curve:

$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00$ ".
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00$ ".
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=$

Examples of points on this curve:

$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00$ ".
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.

Examples of points on this curve:
$(0,1)=" 12: 00 "$.
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00$ "
$(-1,0)=$ "9:00".
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
$(\sqrt{1 / 2}, \sqrt{1 / 2})=" 1: 30$ ".
$(3 / 5,4 / 5)$. $(-3 / 5,4 / 5)$.

Examples of points on this curve:
$(0,1)=" 12: 00$ ".
$(0,-1)=" 6: 00 "$.
$(1,0)=" 3: 00 "$.
$(-1,0)=" 9: 00$ ".
$(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$(1 / 2,-\sqrt{3 / 4})=" 5: 00 "$.
$(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
$(\sqrt{1 / 2}, \sqrt{1 / 2})=" 1: 30 "$.
$(3 / 5,4 / 5)$. $(-3 / 5,4 / 5)$.
$(3 / 5,-4 / 5) .(-3 / 5,-4 / 5)$.
$(4 / 5,3 / 5) .(-4 / 5,3 / 5)$.
$(4 / 5,-3 / 5) .(-4 / 5,-3 / 5)$.
Many more.

Addition on the clock: y

Addition on the clock:

Addition on the clock:

Addition on the clock:

Adding two points corresponds to adding the angles α_{1} and α_{2}. Angles modulo 360° are a group, so points on clock are a group.

Neutral element: angle $\alpha=0$; point $(0,1)$; "12:00".
The point with $\alpha=180^{\circ}$
has order 2 and equals 6:00.
3:00 and 9:00 have order 4.
Inverse of point with α
is point with $-\alpha$
since $\alpha+(-\alpha)=0$.
There are many more points where angle α is not "nice."

Clock addition without sin, cos:

Use Cartesian coordinates for
addition. Addition formula
for the clock $x^{2}+y^{2}=1$:
$\operatorname{sum}\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
$=\left(x_{1} y_{2}+y_{1} x_{2}, y_{1} y_{2}-x_{1} x_{2}\right)$.
Note $\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$.
$k P=\underbrace{P+P+\cdots+P}$ for $k \geq 0$. k copies

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "
\end{aligned}
$$

"5:00" + "9:00"

$$
=(1 / 2,-\sqrt{3 / 4})+(-1,0)
$$

$$
=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "
$$

$$
2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right) .
$$

Examples of clock addition:

$$
\begin{aligned}
& " 2: 00 "+" 5: 00 " \\
& =(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4}) \\
& =(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "
\end{aligned}
$$

"5:00" + "9:00"

$$
=(1 / 2,-\sqrt{3 / 4})+(-1,0)
$$

$$
=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "
$$

$$
2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right) .
$$

$$
3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right) .
$$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
" $5: 00 "+$ " $9: 00 "$
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=$

Examples of clock addition: "2:00" + "5:00"
$=(\sqrt{3 / 4}, 1 / 2)+(1 / 2,-\sqrt{3 / 4})$
$=(-1 / 2,-\sqrt{3 / 4})=" 7: 00 "$.
"5:00" + "9:00"
$=(1 / 2,-\sqrt{3 / 4})+(-1,0)$
$=(\sqrt{3 / 4}, 1 / 2)=" 2: 00 "$.
$2\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{24}{25}, \frac{7}{25}\right)$.
$3\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{117}{125}, \frac{-44}{125}\right)$.
$4\left(\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{336}{625}, \frac{-527}{625}\right)$.
$\left(x_{1}, y_{1}\right)+(0,1)=\left(x_{1}, y_{1}\right)$.
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$.

Clocks over finite fields

$\operatorname{Clock}\left(\mathbf{F}_{7}\right)=$
$\left\{(x, y) \in \mathbf{F}_{7} \times \mathbf{F}_{7}: x^{2}+y^{2}=1\right\}$.
Here $\boldsymbol{F}_{7}=\{0,1,2,3,4,5,6\}$
$=\{0,1,2,3,-3,-2,-1\}$
with,,$+- \times$ modulo 7 .

Larger example: $\operatorname{Clock}\left(\mathbf{F}_{1000003}\right)$.
Examples of clock addition:
$2(1000,2)=(4000,7)$.
$4(1000,2)=(56000,97)$.
$8(1000,2)=(863970,18817)$.
$16(1000,2)=(549438,156853)$.
$17(1000,2)=(951405,877356)$.
With 30 clock additions
we computed
$n(1000,2)=(947472,736284)$
for some 6-digit n.
Can you figure out n ?

Clock cryptography

Standardize a large prime p and some $(X, Y) \in \operatorname{Clock}\left(\mathbf{F}_{p}\right)$.

Alice chooses big secret a.
Computes her public key $a(X, Y)$.
Bob chooses big secret b.
Computes his public key $b(X, Y)$.
Alice computes $a(b(X, Y))$.
Bob computes $b(a(X, Y))$.
I.e., both obtain $(a b)(X, Y)$.

They use this shared value
to encrypt with AES-GCM etc.

Alice's
Bob's
secret key a
 $a(X, Y)$ \{Alice, Bob\}'s shared sear
$a b(X, Y)$
secret key b \downarrow
Bb's
public key $b(X, Y)$
\{Bob, Alice\}'s shared secret $b a(X, Y)$

Alice's

secret key a

Bob's secret key b

$$
a(X, Y)
$$

public key $b(X, Y)$
\{Alice, Bob\}'s \{Bob, Alice\}'s shared secret $=$ shared secret $a b(X, Y)$

Warning: Clocks aren't elliptic! Can attack clock cryptography, e.g., compute a from public key, by combining congruences. To match RSA-3072 security need $p \approx 2^{1536}$.

Addition on an Edwards curve

Change the curve on which Alice and Bob work.

$x^{2}+y^{2}=1-30 x^{2} y^{2}$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$.

The clock again, for comparison:

y

$x^{2}+y^{2}=1$.
Sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(x_{1} y_{2}+y_{1} x_{2}\right.$,
$\left.y_{1} y_{2}-x_{1} x_{2}\right)$.
"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 0?"
Answer: They aren't!
If $x_{i}=0$ or $y_{i}=0$ then
$1 \pm 30 x_{1} x_{2} y_{1} y_{2}=1 \neq 0$.
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 0 ?"
Answer: They aren't!
If $x_{i}=0$ or $y_{i}=0$ then
$1 \pm 30 x_{1} x_{2} y_{1} y_{2}=1 \neq 0$.
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
If $x_{1}^{2}+y_{1}^{2}=1-30 x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1-30 x_{2}^{2} y_{2}^{2}$
then $\sqrt{30}\left|x_{1} y_{1}\right|<1$
and $\sqrt{30}\left|x_{2} y_{2}\right|<1$
"Hey, there were divisions
in the Edwards addition law!
What if the denominators are 0?"
Answer: They aren't!
If $x_{i}=0$ or $y_{i}=0$ then
$1 \pm 30 x_{1} x_{2} y_{1} y_{2}=1 \neq 0$.
If $x^{2}+y^{2}=1-30 x^{2} y^{2}$
then $30 x^{2} y^{2}<1$
so $\sqrt{30}|x y|<1$.
If $x_{1}^{2}+y_{1}^{2}=1-30 x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1-30 x_{2}^{2} y_{2}^{2}$
then $\sqrt{30}\left|x_{1} y_{1}\right|<1$ and $\sqrt{30}\left|x_{2} y_{2}\right|<1$
so $30\left|x_{1} y_{1} x_{2} y_{2}\right|<1$
so $1 \pm 30 x_{1} x_{2} y_{1} y_{2}>0$

The Edwards addition law

$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1-30 x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1+30 x_{1} x_{2} y_{1} y_{2}\right)\right)$
is a group law for the curve $x^{2}+y^{2}=1-30 x^{2} y^{2}$.

Some calculation required: addition result is on curve; addition law is associative.

Other parts of proof are easy: addition law is commutative;
$(0,1)$ is neutral element;
$\left(x_{1}, y_{1}\right)+\left(-x_{1}, y_{1}\right)=(0,1)$.

More Edwards curves

Fix an odd prime power q.
Fix a non-square $d \in \mathbf{F}_{q}$.
$\left\{(x, y) \in \mathbf{F}_{q} \times \mathbf{F}_{q}:\right.$

$$
\left.x^{2}+y^{2}=1+d x^{2} y^{2}\right\}
$$

is a commutative group with
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$
defined by Edwards addition law:
$x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}$,
$y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}$.

Denominators are never 0 .
But need different proof; " $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.

Denominators are never 0 .
But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$
and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$

Denominators are never 0 .
But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$
and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$
then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$
$=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$

Denominators are never 0 .
But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$
and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$
then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$
$=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$

Denominators are never 0 .
But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$
and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$
then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$
$=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$

Denominators are never 0 .
But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$
then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$
$=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$
$=1+d x_{1}^{2} y_{1}^{2} \pm 2 x_{1} y_{1}$

Denominators are never 0 .
But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$
and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$
and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$
then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$
$=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$
$=1+d x_{1}^{2} y_{1}^{2} \pm 2 x_{1} y_{1}$
$=x_{1}^{2}+y_{1}^{2} \pm 2 x_{1} y_{1}$

Denominators are never 0 .
But need different proof;
" $x^{2}+y^{2}>0$ " doesn't work in \mathbf{F}_{q}.
If $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and $x_{2}^{2}+y_{2}^{2}=1+d x_{2}^{2} y_{2}^{2}$ and $d x_{1} x_{2} y_{1} y_{2}= \pm 1$
then $d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}$
$=d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}+2 x_{2} y_{2}\right)$
$=d x_{1}^{2} y_{1}^{2}\left(d x_{2}^{2} y_{2}^{2}+1+2 x_{2} y_{2}\right)$
$=d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2}+d x_{1}^{2} y_{1}^{2}+2 d x_{1}^{2} y_{1}^{2} x_{2} y_{2}$
$=1+d x_{1}^{2} y_{1}^{2} \pm 2 x_{1} y_{1}$
$=x_{1}^{2}+y_{1}^{2} \pm 2 x_{1} y_{1}$
$=\left(x_{1} \pm y_{1}\right)^{2}$.

Case 1: $x_{2}+y_{2} \neq 0$. Then $d=\left(\frac{x_{1} \pm y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2}$, contradiction.

Case 1: $x_{2}+y_{2} \neq 0$. Then $d=\left(\frac{x_{1} \pm y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2}$, contradiction.

Case 2: $x_{2}-y_{2} \neq 0$. Then
$d=\left(\frac{x_{1} \mp y_{1}}{x_{1} y_{1}\left(x_{2}-y_{2}\right)}\right)^{2}$,
contradiction.

Case 1: $x_{2}+y_{2} \neq 0$. Then $d=\left(\frac{x_{1} \pm y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2}$, contradiction.

Case 2: $x_{2}-y_{2} \neq 0$. Then
$d=\left(\frac{x_{1} \mp y_{1}}{x_{1} y_{1}\left(x_{2}-y_{2}\right)}\right)^{2}$,
contradiction.
Case 3: $x_{2}+y_{2}=x_{2}-y_{2}=0$.
Then $x_{2}=0$ and $y_{2}=0$,
contradiction.

Using ECC sensibly

Typical starting point:

Client knows secret key a and server's public key $b(X, Y)$.
Client computes (and caches)
shared secret $a b(X, Y)$.
Client has packet for server.
Generates unique nonce.
Uses shared secret to encrypt and authenticate packet.

Total packet overhead:
24 bytes for nonce,
16 bytes for authenticator,
32 bytes for client's public key.

Server receives packet,
sees client's public key $a(X, Y)$.
Server computes (and caches)
shared secret $a b(X, Y)$.
Server uses shared secret
to verify authenticator
and decrypt packet.
Client and server encrypt,
authenticate, verify, and decrypt all subsequent packets
in the same way,
using the same shared secret.

Easy-to-use packet protection: crypto_box from
nacl.cace-project.eu.
High-security curve (Curve25519).
High-security implementation
(e.g., no secret array indices).

Extensive code validation.

Server can compute shared secrets
for 1000000 new clients
in 40 seconds of computation on a Core 2 Quad.

Not much hope for attacker if ECC user is running this!

Edwards curves are cool

How to compute $a P$

Use binary representation of a to compute $a(X, Y)$
in $\left\lfloor\log _{2} a\right\rfloor$ doublings
and at most that many additions.
E.g. $a=23=(10111)_{2}$:
$23 P=2(2(2(2 P)+P)+P)+P$.
For $a=\left(1, a_{n-1}, \ldots, a_{1}, a_{0}\right)_{2}$;
compute scalar multiplication
$a P=2\left(\cdots 2\left(2\left(2 P+a_{n-1} P\right)+\right.\right.$ $\left.\left.a_{n-2} P\right)+\cdots+a_{1} P\right)+a_{0} P$.

There exist other, more efficient methods.

Faster group operations

Can split computation $a P$ into additions and doublings.
Formulas $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(\left(x_{1} y_{2}+y_{1} x_{2}\right) /\left(1+d x_{1} x_{2} y_{1} y_{2}\right)\right.$,
$\left.\left(y_{1} y_{2}-x_{1} x_{2}\right) /\left(1-d x_{1} x_{2} y_{1} y_{2}\right)\right)$
use expensive divisions.
Better: postpone divisions and work with fractions.
Represent $\left(x_{1}, y_{1}\right)$ as
$\left(X_{1}: Y_{1}: Z_{1}\right)$ with $x_{1}=X_{1} / Z_{1}$ and $y_{1}=Y_{1} / Z_{1}$ for $Z_{1} \neq 0$.

Addition formulas in these

 projective coordinates:$A=Z_{1} \cdot Z_{2} ; \quad B=A^{2} ;$
$C=X_{1} \cdot X_{2} ; D=Y_{1} \cdot Y_{2} ;$
$E=d \cdot C \cdot D ; F=B-E$;
$G=B+E ; X_{3}=A \cdot F$.
$\left(\left(X_{1}+Y_{1}\right) \cdot\left(X_{2}+Y_{2}\right)-C-D\right) ;$
$Y_{3}=A \cdot G \cdot(D-C) ; Z_{3}=F \cdot G$.
Needs $1 \mathbf{S}+10 \mathrm{M}+1 \mathrm{M}_{d}$.
Uses
$\left(X_{1}+Y_{1}\right) \cdot\left(X_{2}+Y_{2}\right)-C-D=$
$X_{1} X_{2}+X_{1} Y_{2}+Y_{1} X_{2}+Y_{1} Y_{2}-$
$X_{1} X_{2}-Y_{1} Y_{2}=$
$X_{1} Y_{2}+Y_{1} X_{2}$.

Doubling means $P_{2}=P_{1}$, i.e.,
$\left(x_{1}, y_{1}\right)+\left(x_{1}, y_{1}\right)=$
$\left(\left(x_{1} y_{1}+y_{1} x_{1}\right) /\left(1+d x_{1} x_{1} y_{1} y_{1}\right)\right.$,
$\left.\left(y_{1} y_{1}-x_{1} x_{1}\right) /\left(1-d x_{1} x_{1} y_{1} y_{1}\right)\right)=$
$\left(\left(2 x_{1} y_{1}\right) /\left(1+d x_{1}^{2} y_{1}^{2}\right)\right.$,
$\left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(1-d x_{1}^{2} y_{1}^{2}\right)\right)$.
Remember $P_{1}=\left(x_{1}, y_{1}\right)$
is a point on the Edwards curve,
thus $x_{1}^{2}+y_{1}^{2}=1+d x_{1}^{2} y_{1}^{2}$ and
$2 P_{1}=\left(\left(2 x_{1} y_{1}\right) /\left(x_{1}^{2}+y_{1}^{2}\right)\right.$,

$$
\left.\left(y_{1}^{2}-x_{1}^{2}\right) /\left(2-\left(x_{1}^{2}+y_{1}^{2}\right)\right)\right)
$$

This transformation reduced

the total degree of the equation from 4 to 2.

Doubling formulas in projective coordinates:
$B=\left(X_{1}+Y_{1}\right)^{2} ; \quad C=X_{1}^{2} ;$
$D=Y_{1}^{2} ; E=C+D ; H=Z_{1}^{2}$;
$J=E-2 H$;
$X_{3}=(B-E) \cdot J ;$
$Y_{3}=E \cdot(C-D) ; Z_{3}=E \cdot J$.
Needs 4S+3M.

Doubling formulas in projective coordinates:
$B=\left(X_{1}+Y_{1}\right)^{2} ; C=X_{1}^{2}$;
$D=Y_{1}^{2} ; E=C+D ; H=Z_{1}^{2}$;
$J=E-2 H$;
$X_{3}=(B-E) \cdot J ;$
$Y_{3}=E \cdot(C-D) ; Z_{3}=E \cdot J$.
Needs 4S+3M.
1 doubling far less expensive than 1 addition.
Usual scalar multiplication uses many more doublings than additions.

More variations of addition:
e.g., in inverted coordinates $\left(X_{1}\right.$: $\left.Y_{1}: Z_{1}\right)$ corresponds to $x_{1}=$
Z_{1} / X_{1} and $y_{1}=Z_{1} / Y_{1}$.
Alternative addition formulas:
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=$
$\left(\left(x_{1} y_{1}+x_{2} y_{2}\right) /\left(x_{1} x_{2}+y_{1} y_{2}\right)\right.$,
$\left.\left(x_{1} y_{1}-x_{2} y_{2}\right) /\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)$.
Attention: these formulas
fail for doubling.
Curious fact: formulas do not involve curve parameter d.

Twisted Edwards curves

Generalization to cover more curves over given finite field \boldsymbol{F}_{q} : Use $a, d \in \mathbf{F}_{q}^{*}$ with $a \neq d$ and consider twisted Edwards curve $a x^{2}+y^{2}=1+d x^{2} y^{2}$.

Why do users want more curves?
One answer: Speed!
Particularly fast choice:
$a=-1$ gives additions in 8 M .

ECDSA

Users can sign messages
using Edwards curves.
Take a point P on an Edwards curve modulo a prime $q>2$.

ECDSA signer needs to know the order of P.

There are only finitely many other points; about q in total.
Adding P to itself will eventually reach $(0,1)$; let ℓ be the smallest integer >0 with $\ell P=(0,1)$. This ℓ is the order of P.

The signature scheme has as system parameters a curve E; a base point P; and a hash function h with output length at least $\left\lfloor\log _{2} \ell\right\rfloor+1$.
Alice's secret key is an integer a and her public key is $P_{A}=a P$.

To sign message m,
Alice computes $h(m)$;
picks random k;
computes $R=k P=\left(x_{1}, y_{1}\right)$;
puts $r \equiv y_{1} \bmod \ell$; computes $s \equiv k^{-1}(h(m)+r \cdot a) \bmod \ell$.

The signature on m is (r, s).

Anybody can verify signature given m and (r, s) :
Compute $w_{1} \equiv s^{-1} h(m) \bmod \ell$ and $w_{2} \equiv s^{-1} \cdot r \bmod \ell$.
Check whether the y-coordinate of $w_{1} P+w_{2} P_{A}$ equals r modulo ℓ and if so, accept signature.

Alice's signatures are valid:
$w_{1} P+w_{2} P_{A}=$

$$
\begin{aligned}
& \left(s^{-1} h(m)\right) P+\left(s^{-1} \cdot r\right) P_{A}= \\
& \left(s^{-1}(h(m)+r a)\right) P=k P
\end{aligned}
$$

and so the y-coordinate of this expression equals r,
the y-coordinate of $k P$.

Attacker's view on signatures

Anybody can produce an $R=k P$. Alice's private key is only used in $s \equiv k^{-1}(h(m)+r \cdot a) \bmod \ell$.

Can fake signatures if one can break the DLP, i.e., if one can compute a from P_{A}.
But ECC is attractive because the DLP is hard.

Sometimes attacks are easier. . .

If k is known for some $m,(r, s)$ then $a \equiv(s k-h(m)) / r \bmod \ell$.

If two signatures $m_{1},\left(r, s_{1}\right)$ and $m_{2},\left(r, s_{2}\right)$ have the same value for r : assume $k_{1}=k_{2}$; observe $s_{1}-s_{2}=k_{1}^{-1}\left(h\left(m_{1}\right)+r a-\right.$ $\left.\left(h\left(m_{2}\right)+r a\right)\right)$; compute $k=$ $\left(s_{1}-s_{2}\right) /\left(h\left(m_{1}\right)-h\left(m_{2}\right)\right)$. Continue as above.

If bits of many k 's are known (biased PRNG) can attack $s \equiv k^{-1}(h(m)+r \cdot a) \bmod \ell$ as hidden number problem using lattice basis reduction.

Malicious signer

Alice can set up her public key so that two messages of her choice share the same signature,
ie., she can claim to have
signed m_{1} or m_{2} at will:
$R=\left(x_{1}, y_{1}\right)$ and $-R=\left(-x_{1}, y_{1}\right)$
have the same y-coordinate.
Thus, (r, s) fits $R=k P$,
$s \equiv k^{-1}\left(h\left(m_{1}\right)+r a\right) \bmod \ell$ and
$-R=(-k) P$,
$s \equiv-k^{-1}\left(h\left(m_{2}\right)+r a\right) \bmod \ell$ if $a \equiv-\left(h\left(m_{1}\right)+h\left(m_{2}\right)\right) / 2 r \bmod \ell$.

Malicious signer

Alice can set up her public key so that two messages of her choice share the same signature,
ie., she can claim to have
signed m_{1} or m_{2} at will:
$R=\left(x_{1}, y_{1}\right)$ and $-R=\left(-x_{1}, y_{1}\right)$
have the same y-coordinate.
Thus, (r, s) fits $R=k P$,
$s \equiv k^{-1}\left(h\left(m_{1}\right)+r a\right) \bmod \ell$ and
$-R=(-k) P$,
$s \equiv-k^{-1}\left(h\left(m_{2}\right)+r a\right) \bmod \ell$ if $a \equiv-\left(h\left(m_{1}\right)+h\left(m_{2}\right)\right) / 2 r \bmod \ell$.
(Easy tweak: include bit of x_{1}.)

Elliptic curves

Why do we talk about
Edwards curves in this tutorial?
Edwards curves are elliptic;
easiest way to understand elliptic curves is Edwards.

But more elliptic curves exist!
Most common representation:
Weierstrass curve
$v^{2}=u^{3}+a_{2} u^{2}+a_{4} u+a_{6}$.
(Weierstrass has different
form in characteristic 2 or 3.)

Addition on Weierstrass curve

$v^{2}=u^{3}+u^{2}+u+1$

Slope $\lambda=\left(v_{2}-v_{1}\right) /\left(u_{2}-u_{1}\right)$
(note $u_{1} \neq u_{2}$).

Doubling on Weierstrass curve

$v^{2}=u^{3}-u$

Slope $\lambda=\left(3 u_{1}^{2}-1\right) /\left(2 v_{1}\right)$.

General addition:
$\left(u_{P}, v_{P}\right)+\left(u_{R}, v_{R}\right)=$
$\left(u_{P+R}, v_{P+R}\right)=$
$\left(\lambda^{2}-u_{P}-u_{R}, \lambda\left(u_{P}-u_{P+R}\right)-v_{P}\right)$.
$u_{P} \neq u_{R}$, "addition":
$\lambda=\left(v_{R}-v_{P}\right) /\left(u_{R}-u_{P}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+1 \mathbf{S}$.
$P=R$ and $v_{P} \neq 0$, "doubling":
$\lambda=\left(3 u_{P}^{2}+2 a_{2} u_{P}+a_{4}\right) /\left(2 v_{P}\right)$.
Total cost $\mathbf{1 I}+2 \mathbf{M}+2 \mathbf{S}$.
Also handle some exceptions:
$\left(u_{P}, v_{P}\right)=\left(u_{R},-v_{R}\right)$;
inputs at ∞.

Birational equivalence

Starting from point (x, y)
on $x^{2}+y^{2}=1+d x^{2} y^{2}$:
Define $A=2(1+d) /(1-d)$,
$B=4 /(1-d)$;
$u=(1+y) /(B(1-y))$,
$v=u / x=(1+y) /(B x(1-y))$.
(Skip a few exceptional points.)
Then (u, v) is a point on a Weierstrass curve:
$v^{2}=u^{3}+(A / B) u^{2}+\left(1 / B^{2}\right) u$.
Easily invert this map:
$x=u / v, y=(B u-1) /(B u+1)$.

Attacker can transform Edwards

 curve to Weierstrass curve and vice versa; $n(x, y) \mapsto n(u, v)$. \Rightarrow Same discrete-log security!Can choose curve representation so that implementation of attack is faster/easier.

System designer can choose curve representation so that protocol runs fastest; no need to worry about security degradation.

Faster group operations

Designer has choice of
curve representation and
point representation.
Most protocols do
a full scalar multiplication, many doublings and additions, before they need a unique representative.

Can double and add using inversion-free systems such as projective Edwards coordinates. Faster, but more storage.

Montgomery curves

1987 Montgomery:

Use $b y^{2}=x^{3}+a x^{2}+x$.
Choose small $(a+2) / 4$.
$2\left(x_{2}, y_{2}\right)=\left(x_{4}, y_{4}\right)$
$\Rightarrow x_{4}=\frac{\left(x_{2}^{2}-1\right)^{2}}{4 x_{2}\left(x_{2}^{2}+a x_{2}+1\right)}$.
$\left(x_{3}, y_{3}\right)-\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)$,
$\left(x_{3}, y_{3}\right)+\left(x_{2}, y_{2}\right)=\left(x_{5}, y_{5}\right)$
$\Rightarrow x_{5}=\frac{\left(x_{2} x_{3}-1\right)^{2}}{x_{1}\left(x_{2}-x_{3}\right)^{2}}$.

Represent (x, y)
as $(X: Z)$ satisfying $x=X / Z$.
$B=\left(X_{2}+Z_{2}\right)^{2}$,
$C=\left(X_{2}-Z_{2}\right)^{2}$,
$D=B-C, X_{4}=B \cdot C$,
$Z_{4}=D \cdot(C+D(a+2) / 4) \Rightarrow$
$2\left(X_{2}: Z_{2}\right)=\left(X_{4}: Z_{4}\right)$.
$\left(X_{3}: Z_{3}\right)-\left(X_{2}: Z_{2}\right)=\left(X_{1}: Z_{1}\right)$,
$E=\left(X_{3}-Z_{3}\right) \cdot\left(X_{2}+Z_{2}\right)$,
$F=\left(X_{3}+Z_{3}\right) \cdot\left(X_{2}-Z_{2}\right)$,
$X_{5}=Z_{1} \cdot(E+F)^{2}$,
$Z_{5}=X_{1} \cdot(E-F)^{2} \Rightarrow$
$\left(X_{3}: Z_{3}\right)+\left(X_{2}: Z_{2}\right)=\left(X_{5}: Z_{5}\right)$.

This representation
does not allow ADD but it allows
DADD, "differential addition":
$Q, R, Q-R \mapsto Q+R$.
e.g. $2 P, P, P \mapsto 3 P$.
e.g. $3 P, 2 P, P \mapsto 5 P$.
egg. $6 P, 5 P, P \mapsto 11 P$.
$2 M+2 S+1 D$ for $D B L$.
$4 \mathrm{M}+2 \mathrm{~S}$ for DADD.
Save 1 M if $Z_{1}=1$.
Easily compute $n\left(X_{1}: Z_{1}\right)$ using $\approx \lg n \mathrm{DBL}, \approx \lg n \mathrm{DADD}$.
Almost as fast as Edwards $n P$.
Relatively slow for $m P+n Q$ etc.

More addition formulas

Explicit-Formulas Database:
hyperelliptic.org/EFD
EFD has 581 computer-verified
formulas and operation counts
for ADD, DBL, etc.
in 51 representations
on 13 shapes of elliptic curves.
Not yet handled by computer: generality of curve shapes
(e.g., Hessian order $\in 3 Z$);
complete addition algorithms
(e.g., checking for ∞).

Notation

$$
n=\sum_{i=0}^{l-1} n_{i} 2^{i}
$$

we write n in binary
representation

$$
n=\left(n_{l-1} \ldots n_{0}\right)_{2}
$$

E.g. $n=35=32+2+1=1 \cdot 2^{5}+$
$0 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}$,
then $35=(100011)_{2}$.
The following algorithms are stated in some group $(G,+)$ with neutral element O. Scalar multiplication is denoted by $n P=P+P+\cdots+P(n$ terms $)$.

Right-to-Left Binary

IN: An element $P \in G$
and a positive integer $n=$
$\left(n_{l-1} \ldots n_{0}\right)_{2}$.
OUT: The element $n P \in G$.
$R \leftarrow O, Q \leftarrow P$,
for $i=0$ to $l-2$ do

$$
\begin{aligned}
& \text { if } n_{i}=1 \text { then } R \leftarrow P+Q \\
& Q \leftarrow 2 Q
\end{aligned}
$$

if $n_{l-1}=1$ then $R \leftarrow P+Q$ return R

This algorithm computes $35 P=$ $2^{5} P+2^{1} P+P$.
At the end of step $2, Q=2^{i+1} P$ and $R=\left(n_{i} \ldots n_{0}\right)_{2} P$.

Left-to-Right Binary

IN: An element $P \in G$ and a positive integer $n=$
$\left(n_{l-1} \ldots n_{0}\right)_{2}, n_{l-1}=1$.
OUT: The element $n P \in G$.
$R \leftarrow P$
for $i=l-2$ to 0 do

$$
\begin{aligned}
& R \leftarrow 2 R \\
& \text { if } n_{i}=1 \text { then } R \leftarrow P+R
\end{aligned}
$$

return R
This algorithm computes $35 P=$
$2(2(2(2(2 P)))+P)+P$.
The intermediate variable R holds
$\left(n_{l-1} \ldots n_{i}\right)_{2} P$.

Number of additions

For each 1 in the binary

representation of n we compute an addition. On average there are l/2 non-zero coefficients.

In some groups (e.g. elliptic curves) $P+Q$ has the same cost as $P-Q$, so it makes sense to use negative coefficients. This gives signed binary expansions.

Note that $31=2^{4}+2^{3}+2^{2}+$ $2+1=2^{5}-1$ and so $31 P=$ $2(2(2(2 P+P)+P)+P)+P)$

$$
=2(2(2(2(2 P)))))-P
$$

Can always replace two adjacent 1 's in the binary expansion by $10 \overline{1}$ since $(11)_{2}=(10 \overline{1})_{s}$.
($\overline{1}$ denotes -1).
By systematically replacing runs of 1's we can guarantee that there are no two adjacent bits that are nonzero.

A representation fulfilling this is called a "non-adjacent form" (NAF).

NAF's have the lowest density among all signed binary
expansions (with coefficients in
$\{0,1,-1\}$).
$(10010100110111010110)_{2}=$
$(100101001101110110 \overline{1} 0)_{2}=$
$(1001010011011110 \overline{1} 0 \overline{1} 0)_{2}=$
$(10010100111000 \overline{1} 0 \overline{1} 0 \overline{1} 0)_{2}=$
$(1001010100 \overline{1} 000 \overline{1} 0 \overline{1} 0 \overline{1} 0)_{2}$
Results no worse, but not necessarily better:
$35=(100011)_{2}=(10010 \overline{1})_{s}$.

Non-Adjacent Form
IN: Positive integer $n=$
$\left(n_{l} n_{l-1} \ldots n_{0}\right)_{2}, n_{l}=n_{l-1}=0$.
OUT: NAF of $n,\left(n_{l-1}^{\prime} \ldots n_{0}^{\prime}\right)_{s}$.
$c_{0} \leftarrow 0$
for $i=0$ to $l-1$ do

$$
\begin{aligned}
& c_{i+1} \leftarrow\left\lfloor\left(c_{i}+n_{i}+n_{i+1}\right) / 2\right\rfloor \\
& n_{i}^{\prime} \leftarrow c_{i}+n_{i}-2 c_{i+1}
\end{aligned}
$$

return $\left(n_{l-1}^{\prime} \ldots n_{0}^{\prime}\right)_{s}$
Resulting signed binary expansion has length at most $l+1$, so longer by at most 1 bit.
On average there are
l/3 non-zero coefficients.
Can also do left-to-right.

NAF - example
$c_{0} \leftarrow 0$
for $i=0$ to $l-1$ do

$$
\begin{aligned}
& c_{i+1} \leftarrow\left\lfloor\left(c_{i}+n_{i}+n_{i+1}\right) / 2\right\rfloor \\
& n_{i}^{\prime} \leftarrow c_{i}+n_{i}-2 c_{i+1}
\end{aligned}
$$

return $\left(n_{l-1}^{\prime} \ldots n_{0}^{\prime}\right)_{s}$
$35=(00100011)_{2}, c_{0}=0$
$c_{1}=\lfloor(0+1+1) / 2\rfloor=1$,
$n_{0}=0+1-2=-1$
$c_{2}=\lfloor(1+1+0) / 2\rfloor=1$,
$n_{1}=1+1-2=0$
$c_{3}=\lfloor(1+0+0) / 2\rfloor=0$,
$n_{2}=1+0-0=1$

$$
\begin{aligned}
& c_{4}=\lfloor(0+0+0) / 2\rfloor=0, \\
& n_{3}=0+0-0=0 \\
& c_{5}=\lfloor(0+0+1) / 2\rfloor=0, \\
& n_{4}=0+0-0=0 \\
& c_{6}=\lfloor(0+1+0) / 2\rfloor=0, \\
& n_{5}=0+1-0=1 \\
& c_{7}=\lfloor(0+0+0) / 2\rfloor=0, \\
& n_{6}=0+0-0=0 \\
& \Rightarrow 35=(10010 \overline{1})_{s}
\end{aligned}
$$

Generalizations

So far all expansions in base 2
(signed or unsigned).
Generalize to larger base; often
$2^{w}(w>1)$. Then the coefficients
are in $\left[0,2^{w}-1\right]$. Also fractional windows have been suggested.
w is called window width.
Assume that $m P$ for
$m \in\left[0,2^{w}-1\right]$ are precomputed.
Easiest way: just group w bits.

Sliding windows: Group w bits and skip forward if LSB is 0
(requires only odd integers in $\left[0,2^{w}-1\right]$) as coefficients and leads to $l /(w+1)$ additions).

If - is cheap,
use signed sliding windows;
this leads to $l /(w+2)$ additions.
$(10 \underline{01} \underline{01} \underline{00} 11 \underline{01} \underline{11} \underline{0101} \underline{10})_{2}=$
$(02010100030103010102)_{2}=$
(2110313112) ${ }_{4}$,
needs 8 additions and
precomputed $2 P$ and $3 P$.
$(100101001101 \underline{11010110})_{2}=$ $(10010100030103010030)_{2}$, needs 7 additions and only precomputed $3 P$.
$(10010100110111010110)_{2}=$ $(100101001110000 \overline{3} 0030)_{2}=$ $(1001010100 \overline{1} 0000 \overline{3} 0030)_{2}=$ $(1001100 \overline{3} 00 \overline{1} 0000 \overline{3} 0030)_{2}=$ $(1000300 \overline{3} 00 \overline{1} 0000 \overline{3} 0030)_{2}$
needs 5 additions and
precomputed $3 P$, assuming that - is available.

Fixed base point

If the same point P is used with different scalars and if storage is not too restricted one can precompute and store all $P_{i}=$ $2^{i} P$. Then one can obtain $n P$ as $n P=\sum n_{i} P_{i}$
using only additions.

Combining this approach with windowing means precomputing $m 2^{i w} P$ for $m \in\left[0,2^{w}-1\right]$ and $i \in[0, l / w]$. Note that in this case the windows do not slide. (2110313112) ${ }_{4} P$ is computed from the $3 \cdot 10$ precomputed points $m P, m 4 P, m 16 P, \ldots, m 4^{9} P$ for $m \in\{1,2,3\}$ in 8 additions and 0 doublings.

Montgomery Ladder

Consider the intermediate results
(i is decreasing).
$Q_{i}=\sum_{j=i}^{l} n_{j} 2^{j-i} P$, put $R_{i}=$
$Q_{i}+P$, then $Q_{i}=2 Q_{i+1}+n_{i} P=$
$Q_{i+1}+R_{i+1}+n_{i} P-P=2 R_{i+1}+$ $n_{i} P-2 P$.
This implies $\left(Q_{i}, R_{i}\right)$
$\left\{\left(2 Q_{i+1}, Q_{i+1}+R_{i+1}\right) \quad\right.$ if $n_{i}=0$
$\left\{\left(Q_{i+1}+R_{i+1}, 2 R_{i+1}\right) \quad\right.$ if $n_{i}=1$ $13=(1101)_{2}:$
$\left(Q_{3}, R_{3}\right)=(P, 2 P)$
$\left(Q_{2}, R_{2}\right)=(3 P, 4 P)$
$\left(Q_{1}, R_{1}\right)=(6 P, 7 P)$
$\left(Q_{0}, R_{0}\right)=(13 P, 14 P)$

Idea of joint doublings

To compute

$n_{1} P_{1}+n_{2} P_{2}+\cdots+n_{m} P_{m}$ compute the doublings together, i.e. write scalars n_{i} in binary: $n_{1}=n_{1, l-1} 2^{l-1}+n_{1, l-2^{2 l-2}}+\ldots+n_{1,0}$ $n_{2}=n_{2, l-1} 2^{l-1}+n_{2, l-2^{2}}{ }^{l-2}+\ldots+n_{2,0}$ $\vdots \quad \vdots \quad \vdots$
$n_{m}=n_{m, l-1} 2^{l-1}+n_{m, l-2^{2}} 2^{l-2}+\ldots n_{m, 0}$

Idea of joint doublings

To compute

$n_{1} P_{1}+n_{2} P_{2}+\cdots+n_{m} P_{m}$
compute the doublings together,
ie. write scalars n_{i} in binary:
$n_{1}=n_{1, l-1} 2^{l-1}+n_{1, l-2^{2 l-2}}+\ldots+n_{1,0}$
$n_{2}=n_{2, l-1} 2^{l-1}+n_{2, l-2^{2 l-2}}+\ldots+n_{2,0}$
$\vdots \vdots \vdots \vdots$
$n_{m}=n_{m, l-1} 2^{l-1}+n_{m, l-2^{2}} 2^{l-2}+\ldots n_{m, 0}$ Compute as
$2\left(2\left(n_{1, l-1} P_{1}+n_{2, l-1} P_{2}+\cdots+n_{m, l-1} P_{m}\right)+\right.$
$\left(n_{1, l-2} P_{1}+n_{2, l-2} P_{2}+\cdots+n_{m, l-2} P_{m}\right)+\cdots$ etc. Even with precomputations, many more adds than doublings.

Applications

ECDSA verification uses 2 scalar multiplications ... just to add the results.

If base point P is fixed,
precompute $R=2^{l / 2} P$ and include in the curve parameters.
Split scalar $n=n_{1} 2^{l / 2}+n_{0}$ and compute

$$
n_{1} R+n_{0} P
$$

GLV curves split scalar in two
halves to get faster scalar multiplication.

Verification in accelerated ECDSA can be extended to use 4 or even 6 scalars. Splitting of the scalar is done by LLL techniques.

Further applications in batch verification of signatures - many scalars - by taking random linear combinations.

Examples

$1338 P+1715 Q$
$(10100111010)_{2} P+$
$(11010110011)_{2} Q$ takes 20
doublings and 12 additions.
Given precomputed $P+Q$, we can compute the same in 10 doublings and 8 additions.

If - is efficient
$(01010100 \overline{1010})_{2} P+$
$(100 \overline{1} 0 \overline{1} 0 \overline{1} 010 \overline{1})_{2} Q$ reduces
(compared to first line) the number of additions to 10 , but needs 21 doublings.

Given precomputed
$P+Q$ and $P-Q$:
$(01010100 \overline{1} 010)_{2} P+$
$(100 \overline{1} 0 \overline{1} 0 \overline{1} 010 \overline{1})_{2} Q$
needs 11 doublings and 8 additions.

The joint Hamming weight has not decreased, and length has increased.

Asymptotic speeds

1939 Braver algorithm:
$\approx(1+1 / \lg \lg H) \lg H$
additions to compute
$P \mapsto n P$ if $n \leq H$.
1964 Straus algorithm:
$\approx(1+k / \lg \lg H) \lg H$
additions to compute
$P_{1}, \ldots, P_{k} \mapsto n_{1} P_{1}+\cdots+n_{k} P_{k}$
if $n_{1}, \ldots, n_{k} \leq H$.

1976 Yo algorithm:
$\approx(1+k / \lg \lg H) \lg H$
additions to compute
$P \mapsto n_{1} P, \ldots, n_{k} P$
if $n_{1}, \ldots, n_{k} \leq H$.
1976 Pippenger algorithm:
Similar asymptotics,
but replace $\lg \lg H$ with $\lg (k \lg H)$.
Faster than Straus and Mao
if k is large.
(Knuth summary is wrong.)

More generally, Pippenger's algorithm computes
ℓ sums of multiples of k inputs.
$\approx\left(\min \{k, \ell\}+\frac{k \ell}{\lg (k \ell \lg H)}\right) \lg H$ additions
if all coefficients are below H.
Within $1+\epsilon$ of optimal.

More generally, Pippenger's algorithm computes
ℓ sums of multiples of k inputs.
$\approx\left(\min \{k, \ell\}+\frac{k \ell}{\lg (k \ell \lg H)}\right) \lg H$ additions
if all coefficients are below H.
Within $1+\epsilon$ of optimal.
Various special cases of
Pippenger's algorithm were reinvented and patented by 1993 Brickell-Gordon-McCurley-
Wilson, 1995 Lim-Lee, etc.
Is that the end of the story?

No! 1989 Bos-Coster:
If $n_{1} \geq n_{2} \geq \cdots$ then
$n_{1} P_{1}+n_{2} P_{2}+n_{3} P_{3}+\cdots=$
$\left(n_{1}-q n_{2}\right) P_{1}+n_{2}\left(q P_{1}+P_{2}\right)+$
$n_{3} P_{3}+\cdots$ where $q=\left\lfloor n_{1} / n_{2}\right\rfloor$.
Remarkably simple;
competitive with Pippenger
for random choices of n_{i} 's; much better memory usage.

Example of Bos-Coster:

$000100000=32$
$000010000=16$
$100101100=300$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 P_{1}, 16 P_{2}$,
$300 P_{3}, 146 P_{4}, 77 P_{5}, 2 P_{6}, 1 P_{7}$.

Reduce largest row:
$000100000=32$
$000010000=16$
$010011010=154 \leftarrow$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
Goal: Compute $32 P, 16 P$,
$154 P, 146 P, 77 P, 2 P, 1 P$.
Plus one extra addition: add $146 x$ into $154 x$, obtaining $300 x$.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8 \leftarrow$
$010010010=146$
$001001101=77$
$000000010=2$
$000000001=1$
plus 2 additions.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8$
$001000101=69 \leftarrow$
$001001101=77$
$000000010=2$
$000000001=1$
plus 3 additions.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8$
$001000101=69$
$000001000=8 \leftarrow$
$000000010=2$
$000000001=1$
plus 4 additions.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8$
$000100101=37 \leftarrow$
$000001000=8$
$000000010=2$
$000000001=1$
plus 5 additions.

Reduce largest row:
$000100000=32$
$000010000=16$
$000001000=8$
$000000101=5 \leftarrow$
$000001000=8$
$000000010=2$
$000000001=1$
plus 6 additions.

Reduce largest row:
$000010000=16 \leftarrow$ $000010000=16$ $000001000=8$ $000000101=5$ $000001000=8$
$000000010=2$
$000000001=1$
plus 7 additions.

Reduce largest row:
$000000000=0$
$000010000=16$
$000001000=8$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 7 additions.

Reduce largest row:
$000000000=0$
$000001000=8 \leftarrow$
$000001000=8$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 8 additions.

Reduce largest row:
$000000000=0$
$000000000=0 \leftarrow$
$000001000=8$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 8 additions.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
$000000101=5$
$000001000=8$
$000000010=2$
$000000001=1$
plus 8 additions.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000101=5$
$000000011=3 \leftarrow$
$000000010=2$
$000000001=1$
plus 9 additions.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000010=2 \leftarrow$
$000000011=3$
$000000010=2$
$000000001=1$
plus 10 additions.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000010=2$
$000000001=1 \leftarrow$
$000000010=2$
$000000001=1$
plus 11 additions.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
$000000001=1$
$000000010=2$
$000000001=1$
plus 11 additions.

Reduce largest row:
$000000000=0$ $000000000=0$ $000000000=0$
$000000000=0$
$000000001=1$
$000000001=1 \leftarrow$
$000000001=1$
plus 12 additions.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
$000000001=1$
$000000001=1$
plus 12 additions.

Reduce largest row:
$000000000=0$ $000000000=0$ $000000000=0$ $000000000=0$ $000000000=0$
$000000000=0 \leftarrow$
$000000001=1$
plus 12 additions.

Reduce largest row:
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0$
$000000000=0 \leftarrow$
plus 12 additions.
Final addition chain: $1,2,3,5,8$,
16, 32, 37, 69, 77, 146, 154, 300.
Short, no temporary storage,
low two-operand complexity.

$\underline{\mathrm{NaCl}}$

The cryptography part of the
Networking-and-Cryptography
library has 2 main functionalities:
Authenticated encryption:
Use particular Montgomery curve
(Curve25519) over \mathbf{F}_{p} with $p=$ $2^{255}-19$ for DH key exchange; use Poly1305 for authentication and Salsa20 for encryption.

Signatures:
Same curve in Edwards form;
do scalar multiplication in
fixed basepoint scenario
with windowing; use EdDSA
protocol to avoid problems with randomness:

Secret key of user produces a used in $P_{A}=a P$ and string b.
Nonce k is computed as
$k=\operatorname{hash}(b, m)$.
$R=k P$ as in ECDSA.
Hash value h made dependent on
R and P_{A} as $h=\operatorname{hash}\left(R, P_{A}, m\right)$.

Signing and verification avoid inversions
$s \equiv k+h a \bmod \ell$.

Verification: $s P=R+h P_{A}$?

Batch verification of $\left(R_{i}, s_{i}\right)$ with $h_{i}=\operatorname{hash}\left(R_{i}, P_{A_{i}}, m_{i}\right)$ picks random scalars z_{i} and checks whether
$\left(-\sum_{i} z_{i} s_{i} \bmod \ell\right) P+\sum_{i} z_{i} R_{i}+$
$\sum_{i}\left(z_{i} h_{i} \bmod \ell\right) P_{A_{i}}=0$.
Batch verification uses Bos-Coster algorithm.

