Exercise sheet 3, 13 April 2023

1. The binary Hamming code $\mathcal{H}_{4}(2)$ has parity check matrix

$$
H=\left(\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

and parameters $[n, k, d]=[15,11,3]$.
Correct the word ($0,1,1,0,0,1,1,0,0,0,1,1,0,1,1$).
2. This exercise is about attacks on code-based cryptography. Let G be the generator matrix of an $[n, k, d]$ code with $d=2 t+1$. In the basic schoolbook-version of McEliece encryption, a message $m \in \mathbb{F}_{2}^{k}$ is encrypted by computing $y=m G+e$, where $e \in \mathbb{F}_{2}^{n}$ is randomly chosen of weight t.
Alice and Bob use this method to send m but Eve intercepts $y_{1}=$ $m G+e_{1}$ and stops the transmission. After a while, Alice resends an encryption of m, using a different error vector e_{2}, so $y_{2}=m G+e_{2}$, where both e_{i} have weight t.
(a) Compute the average weight of $e_{1}+e_{2}$, where + denotes addition in \mathbb{F}_{2}^{n}, and the average weight of $e_{1} \cdot e_{2}$, where \cdot denotes componentwise multiplication in \mathbb{F}_{2}^{n}.
(b) Show how Eve can recover the message m.

Hint 1: Eve's task should be stated as a decoding problem of a code of length less than n.
Hint 2: First solve the problem assuming that e_{1} and e_{2} have no overlap in their non-zero positions.
Hint 3: Figure out how to retrieve m from y_{1} if you know $k(1+\epsilon)$ positions that are error free, for some positive ϵ.
3. Let K be the public parity-check matrix of a code of length n, dimension k, and minimum distance $d=2 t+1$. The school-book version of the Niederreiter system encrypts a message $m \in \mathbb{F}_{2}^{n}$ of Hamming weight t by computing the syndrome $s=K \cdot m$.
You are given access to a decryption oracle. In the following two situations, show how to recover m and compute how many calls to the oracle are required.
(a) The oracle decrypts any ciphertext $s^{\prime} \neq s$ provided that $s^{\prime}=K \cdot m^{\prime}$ with m^{\prime} of Hamming weight less than or equal to t.
(b) The oracle decrypts any ciphertext $s^{\prime} \neq s$ provided that $s^{\prime}=K \cdot m^{\prime}$ with m^{\prime} of Hamming weight exactly equal to t.
4. RaCoSS is a signature system submitted to NIST's post-quantum competition. The system is specified via two parameters n and $k<n$ and the general system setup publishes an $(n-k) \times n$ matrix H over \mathbb{F}_{2}.
Alice picks an $n \times n$ matrix over \mathbb{F}_{2} in which most entries are zero. This matrix S is her secret key. Her public key is $T=H \cdot S$.

RaCoSS uses a special hash function h which maps to very sparse strings of length n, where very sparse means just 3 non-zero entries for the suggested parameters of $n=2400$ and $k=2060$. You may assume that h reaches all possible bitstrings with exactly 3 entries and that they are attained roughly equally often.

To sign a message m, Alice first picks a vector $y \in \mathbb{F}_{2}^{n}$ which has most of its values equal to zero. Then she computes $v=H y$. She uses the special hash function to hash v and m to a very sparse $c \in \mathbb{F}_{2}^{n}$. Finally she computes $z=S c+y$ and outputs (z, c) as signature on m.
To verify (z, c) on m under public key T, Bob does the following. He checks that z does not have too many nonzero entries. The threshold here is chosen so that properly computed $z=S c+y$ pass this test. For numerical values see below. Then Bob computes $v_{1}=H z, v_{2}=T c$ and puts $v^{\prime}=v_{1}+v_{2}$. He accepts the signature if the hash of v^{\prime} and m produces the c in the signature.
(a) Verify that $v^{\prime}=v$, i.e. that properly formed signatures pass verification. As above, you should assume that the other test on z succeeds.
Note: All computations take place over \mathbb{F}_{2}.
(b) The concrete parameters in the NIST submission specify that $n=$ 2400 , and that the output of h has exactly 3 entries equal to 1 and the remaining 2397 entries equal to 0 .
Compute the size of the image of h, i.e., the number of bitstrings of length n that can be reached by h.
(c) Based on your result under b) compute the costs of finding collisions and the costs of finding a second preimage.
(d) For the proposed parameters the threshold for the number of nonzero entries in z is larger than 1000.
Break the scheme without using any properties of the hash function, i.e. find a way to compute a valid signature (z, c) for any message m and public key T. You have access to the matrix H and can call h.
Hint: You can construct a vector z of weight no larger than $n-k$ that passes all the tests.

