
Exercise sheet 3, 13 April 2023

1. The binary Hamming code H4(2) has parity check matrix

H =


0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


and parameters [n, k, d] = [15, 11, 3].
Correct the word (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1).

2. This exercise is about attacks on code-based cryptography. Let G be
the generator matrix of an [n, k, d] code with d = 2t + 1. In the basic
schoolbook-version of McEliece encryption, a message m ∈ IFk

2 is en-
crypted by computing y = mG + e, where e ∈ IFn

2 is randomly chosen
of weight t.

Alice and Bob use this method to send m but Eve intercepts y1 =
mG + e1 and stops the transmission. After a while, Alice resends an
encryption of m, using a different error vector e2, so y2 = mG + e2,
where both ei have weight t.

(a) Compute the average weight of e1 + e2, where + denotes addition
in IFn

2 , and the average weight of e1 · e2, where · denotes compo-
nentwise multiplication in IFn

2 .

(b) Show how Eve can recover the message m.
Hint 1: Eve’s task should be stated as a decoding problem of a
code of length less than n.
Hint 2: First solve the problem assuming that e1 and e2 have no
overlap in their non-zero positions.
Hint 3: Figure out how to retrieve m from y1 if you know k(1+ε)
positions that are error free, for some positive ε.

3. LetK be the public parity-check matrix of a code of length n, dimension
k, and minimum distance d = 2t + 1. The school-book version of the
Niederreiter system encrypts a message m ∈ IFn

2 of Hamming weight t
by computing the syndrome s = K ·m.

You are given access to a decryption oracle. In the following two sit-
uations, show how to recover m and compute how many calls to the
oracle are required.

1



(a) The oracle decrypts any ciphertext s′ 6= s provided that s′ = K ·m′

with m′ of Hamming weight less than or equal to t.

(b) The oracle decrypts any ciphertext s′ 6= s provided that s′ = K ·m′

with m′ of Hamming weight exactly equal to t.

4. RaCoSS is a signature system submitted to NIST’s post-quantum com-
petition. The system is specified via two parameters n and k < n and
the general system setup publishes an (n− k)× n matrix H over IF2.

Alice picks an n × n matrix over IF2 in which most entries are zero.
This matrix S is her secret key. Her public key is T = H · S.

RaCoSS uses a special hash function h which maps to very sparse
strings of length n, where very sparse means just 3 non-zero entries
for the suggested parameters of n = 2400 and k = 2060. You may
assume that h reaches all possible bitstrings with exactly 3 entries and
that they are attained roughly equally often.

To sign a message m, Alice first picks a vector y ∈ IFn
2 which has most

of its values equal to zero. Then she computes v = Hy. She uses the
special hash function to hash v and m to a very sparse c ∈ IFn

2 . Finally
she computes z = Sc+ y and outputs (z, c) as signature on m.

To verify (z, c) on m under public key T , Bob does the following. He
checks that z does not have too many nonzero entries. The threshold
here is chosen so that properly computed z = Sc + y pass this test.
For numerical values see below. Then Bob computes v1 = Hz, v2 = Tc
and puts v′ = v1 + v2. He accepts the signature if the hash of v′ and m
produces the c in the signature.

(a) Verify that v′ = v, i.e. that properly formed signatures
pass verification. As above, you should assume that the other test
on z succeeds.
Note: All computations take place over IF2.

(b) The concrete parameters in the NIST submission specify that n =
2400, and that the output of h has exactly 3 entries equal to 1
and the remaining 2397 entries equal to 0.

Compute the size of the image of h, i.e., the number of bitstrings
of length n that can be reached by h.

2



(c) Based on your result under b) compute the costs of finding colli-
sions and the costs of finding a second preimage.

(d) For the proposed parameters the threshold for the number of
nonzero entries in z is larger than 1000.

Break the scheme without using any properties of the hash func-
tion, i.e. find a way to compute a valid signature (z, c) for any
message m and public key T . You have access to the matrix H
and can call h.

Hint: You can construct a vector z of weight no larger than n−k
that passes all the tests.

3


