Exercise sheet 2, 06 April 2023

The first exercise is copied from the sheet of last week as I don't know how many of you made it there. I expect you to use Sage or Magma for computing multiples of points. For Sage, the following might be useful:

```
p=17
R.<x,y> = PolynomialRing(GF(p))
E0 = EllipticCurve (y^2- (x^3+x))
P=E0.random_point()
S=3*P
```

1. Let $p=419=4 \cdot 3 \cdot 5 \cdot 7-1$ and let $E_{0}: y^{2}=x^{3}+x$.
(a) Find a point P of order 105 on E_{0}. Compute $R=35 P$, a point of order 3 .
(b) Compute τ_{3}, σ_{3} and $f_{3}(x)$ for $\langle R\rangle$ to compute the curve coefficient B of the curve isogenous to E_{0} under the 3 -isogeny induced by R.
Check that this matches the picture in the slides for part IV.
(c) Compute the image $P^{\prime}=\varphi_{3}(P)$ under the 3 -isogeny and verify that the resulting point P^{\prime} has order 35 . Why does this happen?
(d) Compute $7 P^{\prime}$ and use it to compute the 5 -isogeny, getting the curve parameter and the image $P^{\prime \prime}=\varphi_{5}\left(P^{\prime}\right)$. Check that $P^{\prime \prime}$ has order 7 and that the curve matches the picture in part IV.
(e) Finally do the same for the 7 isogeny coming from $P^{\prime \prime}$.
2. Let p be a prime with $p \equiv 3 \bmod 4$. Show that $E: y^{2}=x^{3}+x$ has $p+1$ points.

Hint: You can argue similar to how I showed that the curve and its quadratic twist together have $2 p+2$ points. Remember that in \mathbb{F}_{p}^{*} there are exactly $(p-1) / 2$ squares and as many non-squares.
3. Without quantum computers the best attack known against CSIDH is a meet-in-themiddle attack. For the CSIDH-512 parameters explain how you would mount such an attack if you can use memory.
(For the low-memory version see the paper by Delfs and Galbraith, but here you're not supposed to report what that paper said but think through the easier version yourself.)
4. Let $p=431$ and note that $p+1=432=2^{4} \cdot 3^{3}$. The curve $E_{0}: y^{2}=x^{3}+x$ is a supersingular curve over \mathbb{F}_{p} and has $p+1$ points. Consider the curve over $\mathbb{F}_{p^{2}}$ where it has $(p+1)^{2}$ points. Find points P and Q of order 3^{3} so that $Q \notin\langle P\rangle$.
Hint: Remember how the negative direction is defined for CSIDH to find the independent points.
5. Let ℓ be a prime. Show that there exist $\ell+1$ different isomorphism classes of curves that are ℓ-isogenous to a given supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$. Note that the isogenies need not be defined over $\mathbb{F}_{p^{2}}$ but can be defined over an extension field.

