Exercises PQC sheet 1 – Isogenies

1. This exercise lets you get familiar with isogenies, the main character of isogeny-based crypto. Let

$$E_1/\mathbb{F}_{17}: y^2 = x^3 + 1, \qquad E_2/\mathbb{F}_{17}: y^2 = x^3 - 10.$$

and

$$E_3/\mathbb{F}_{17}: y^2 = x^3 + 2x + 5.$$

(a) Check that

$$f:(x,y)\mapsto ((x^3+4)/x^2,(x^3y-8y)/x^3)$$

defines a map $E_1 \to E_2$.

- (b) Determine the kernel of f.
- (c) What is the degree of f?
- (d) Calculate the points in the preimage of (3, 0) under f.
- (e) Compute the number of points on $E_1(\mathbb{F}_{17}), E_2(\mathbb{F}_{17})$, and $E_3(\mathbb{F}_{17})$.
- (f) Compute $j(E_1), j(E_2)$, and $j(E_3)$.
- (g) Show that E_1 and E_2 are not isomorphic over \mathbb{F}_{17} but that they are isomorphic over \mathbb{F}_{17^2} .
- (h) Check that

$$g:(x,y)\mapsto ((x^2+x+3)/(x+1),(x^2y+2xy+15y)/(x^2+2x+1))$$

defines a map $E_1 \to E_3$.

- (i) Determine the kernel of g.
- (j) What is the degree of g?
- 2. Let ℓ be a prime. Show that there are $\ell + 1$ size- ℓ subgroups of $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$.
- 3. Let $p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 1$ and let $E_0: y^2 = x^3 + x$.
 - (a) Find a point P of order 105 on E_0 . Compute R = 35P, a point of order 3.

- (b) Compute τ_3, σ_3 and $f_3(x)$ for $\langle R \rangle$ to compute the curve coefficient *B* of the curve isogenous to E_0 under the 3-isogeny induced by *R*. You can verify your solution by checking the labeled graph for p = 419 in the bonus slides of the slide set.
- (c) Compute the image $P' = \varphi_3(P)$ under the 3-isogeny and verify that the resulting point P' has order 35. Why does this happen?
- (d) Compute 7P' and use it to compute the 5-isogeny, getting the curve parameter and the image $P'' = \varphi_5(P')$. Check that P'' has order 7 and that the curve matches the picture in the slides.
- (e) Finally do the same for the 7 isogeny coming from P''.