1. Compute $\varphi(37800)$.

2. Execute the RSA key generation where $p = 239, q = 433$, and $e = 23441$.

3. RSA-encrypt the message 23 to a user with public key $(e, n) = (17, 11584115749)$. Document how you compute the exponentiation if you only have a pocket calculator.

4. Find the smallest positive integer x satisfying the following system of congruences, should such a solution exist.

 \begin{align*}
 x &\equiv 0 \text{ mod } 3 \\
 x &\equiv 1 \text{ mod } 5 \\
 x &\equiv 2 \text{ mod } 8
 \end{align*}

5. Users A, B, C, D, E are friends of S. They have public keys $(e_A, n_A) = (5, 62857), (e_B, n_B) = (5, 64541), (e_C, n_C) = (5, 69799), (e_D, n_D) = (5, 89179)$, and $(e_E, n_E) = (5, 82583)$. You know that S sends the same message to all of them and you observe the ciphertexts $c_A = 11529, c_B = 60248, c_C = 27504, c_D = 43997$, and $c_E = 44926$. What was the message?