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Diffie–Hellman key exchange

I 1976 Diffie and Hellman introduce public-key cryptography.

I To use it, standardize group G and g ∈ G .
Everybody knows G and g as well as how to compute in G .

I Warning #1: Many G are unsafe!

I G = (Q, ·), g = 2, hA = 65536 means a = 16.
In general, just check bitlength.

I G = (Fp,+), i.e., A sends hA ≡ ag mod p.
Can recover a using XGCD.

I Diffie and Hellman suggested G = (F∗
p, ·) with g a primitive

element, i.e., a generator of the whole group.

I Used in practice G ⊂ (F∗
p, ·) with g an element of large prime order.

I Miller and Koblitz suggested G = E (Fp,+), i,e., points on an
elliptic curve over a finite field with addition of points.

I Used in practice G ⊂ E (Fp,+), i,e., prime-order subgroup of points
on an elliptic curve over a finite field with addition of points.
We have seen how to compute + on different curve shapes,
will now study security.
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Hardness assumptions

I Computational Diffie-Hellman Problem (CDHP):
Given P, aP, bP compute abP.

I Decisional Diffie-Hellman Problem (DDHP):
Given P, aP, bP, and cP decide whether cP = abP.

I Discrete Logarithm Problem (DLP):
Given P, aP, compute a.

I If one can solve DLP, then CDHP and DDHP are easy.

I If one can solve CDHP, then DDHP is easy.

I In many groups, DLP and CDHP are equally hard
(up to some constants).

I In some groups, DDHP is significantly easier than CDHP.
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Practical problems

I Eve can set up a man-in-the-middle attack:

A oo
aeP // E oo

bfP // B

I E chooses e and f , presents eP to Alice as Bob’s key, and fP to Bob
as Alice’s key.

I E computes both DH keys aeP and bfP.
I E decrypts everything from A and reencrypts it to B and vice versa.

I This attack requires E to be in charge of the network.
We typically assume such strong attackers.

I This attack cannot be detected unless A and B compare their keys
out of band.
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Semi-static DH

I A cryptosystem combining public-key and symmetric-key crypto is
called a hybrid system1.

I Alice publishes long-term public key PA = aP,
keeps long-term private key a.

I Any user can encrypt to Alice using this key:
I Pick random k and compute R = kP.
I Encrypt message m using symmetric keys derived from KDF(kPA),

for key-derivation function KDF : G → {0, 1}n,
I Send ciphertext c along with R.
I Alice decrypts, by obtaining symmetric key from

KDF(aR) = KDF(akP)

I Alice’s key here is static, Bob’s key is ephemeral.

I Note: ephemeral does not mean one-time;
it means that is not long term.

I Attacker solving DLP or CDHP can compute shared secret.
Attacker solving DDHP can confirm guess.

1Now also used for combining pre-quantum and post-quantum systems.
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