# Discrete logarithm problem I 

Hardness assumptions and usage

Tanja Lange

Eindhoven University of Technology
2MMC10 - Cryptology

## Diffie-Hellman key exchange

- 1976 Diffie and Hellman introduce public-key cryptography.
- To use it, standardize group $G$ and $g \in G$. Everybody knows $G$ and $g$ as well as how to compute in $G$.
- Warning \#1: Many $G$ are unsafe!


## Diffie-Hellman key exchange

- 1976 Diffie and Hellman introduce public-key cryptography.
- To use it, standardize group $G$ and $g \in G$.

Everybody knows $G$ and $g$ as well as how to compute in $G$.

- Warning \#1: Many $G$ are unsafe!
- $G=(\mathbf{Q}, \cdot), g=2, h_{A}=65536$


## Diffie-Hellman key exchange

- 1976 Diffie and Hellman introduce public-key cryptography.
- To use it, standardize group $G$ and $g \in G$.

Everybody knows $G$ and $g$ as well as how to compute in $G$.

- Warning \#1: Many $G$ are unsafe!
- $G=(\mathbf{Q}, \cdot), g=2, h_{A}=65536$ means $a=16$. In general, just check bitlength.
- $G=\left(\mathbf{F}_{p},+\right)$, i.e., $A$ sends $h_{A} \equiv \operatorname{ag} \bmod p$.


## Diffie-Hellman key exchange

- 1976 Diffie and Hellman introduce public-key cryptography.
- To use it, standardize group $G$ and $g \in G$.

Everybody knows $G$ and $g$ as well as how to compute in $G$.

- Warning \#1: Many $G$ are unsafe!
- $G=(\mathbf{Q}, \cdot), g=2, h_{A}=65536$ means $a=16$.

In general, just check bitlength.

- $G=\left(\mathbf{F}_{p},+\right)$, i.e., $A$ sends $h_{A} \equiv a g \bmod p$.

Can recover a using XGCD.

- Diffie and Hellman suggested $G=\left(\mathbf{F}_{p}^{*}, \cdot\right)$ with $g$ a primitive element, i.e., a generator of the whole group.


## Diffie-Hellman key exchange

- 1976 Diffie and Hellman introduce public-key cryptography.
- To use it, standardize group $G$ and $g \in G$.

Everybody knows $G$ and $g$ as well as how to compute in $G$.

- Warning \#1: Many $G$ are unsafe!
- $G=(\mathbf{Q}, \cdot), g=2, h_{A}=65536$ means $a=16$. In general, just check bitlength.
- $G=\left(F_{p},+\right)$, i.e., $A$ sends $h_{A} \equiv a g \bmod p$.

Can recover a using XGCD.

- Diffie and Hellman suggested $G=\left(\mathbf{F}_{p}^{*}, \cdot\right)$ with $g$ a primitive element, i.e., a generator of the whole group.
- Used in practice $G \subset\left(\mathbf{F}_{p}^{*}, \cdot\right)$ with $g$ an element of large prime order.
- Miller and Koblitz suggested $G=E\left(\mathbf{F}_{p},+\right)$, i,e., points on an elliptic curve over a finite field with addition of points.


## Diffie-Hellman key exchange

- 1976 Diffie and Hellman introduce public-key cryptography.
- To use it, standardize group $G$ and $g \in G$.

Everybody knows $G$ and $g$ as well as how to compute in $G$.

- Warning \#1: Many $G$ are unsafe!
- $G=(\mathbf{Q}, \cdot), g=2, h_{A}=65536$ means $a=16$. In general, just check bitlength.
- $G=\left(\mathbf{F}_{p},+\right)$, i.e., $A$ sends $h_{A} \equiv a g \bmod p$.

Can recover a using XGCD.

- Diffie and Hellman suggested $G=\left(\mathbf{F}_{p}^{*}, \cdot\right)$ with $g$ a primitive element, i.e., a generator of the whole group.
- Used in practice $G \subset\left(\mathbf{F}_{p}^{*}, \cdot\right)$ with $g$ an element of large prime order.
- Miller and Koblitz suggested $G=E\left(\mathbf{F}_{p},+\right)$, i,e., points on an elliptic curve over a finite field with addition of points.
- Used in practice $G \subset E\left(\mathbf{F}_{p},+\right)$, i,e., prime-order subgroup of points on an elliptic curve over a finite field with addition of points. We have seen how to compute + on different curve shapes, will now study security.


## Hardness assumptions

- Computational Diffie-Hellman Problem (CDHP): Given $P, a P, b P$ compute $a b P$.
- Decisional Diffie-Hellman Problem (DDHP): Given $P, a P, b P$, and $c P$ decide whether $c P=a b P$.
- Discrete Logarithm Problem (DLP): Given $P, a P$, compute a.
- If one can solve DLP, then CDHP and DDHP are easy.


## Hardness assumptions

- Computational Diffie-Hellman Problem (CDHP): Given $P, a P, b P$ compute $a b P$.
- Decisional Diffie-Hellman Problem (DDHP): Given $P, a P, b P$, and $c P$ decide whether $c P=a b P$.
- Discrete Logarithm Problem (DLP): Given $P, a P$, compute a.
- If one can solve DLP, then CDHP and DDHP are easy.
- If one can solve CDHP, then DDHP is easy.
- In many groups, DLP and CDHP are equally hard (up to some constants).
- In some groups, DDHP is significantly easier than CDHP.


## Practical problems

- Eve can set up a man-in-the-middle attack:

- $E$ chooses $e$ and $f$, presents $e P$ to Alice as Bob's key, and $f P$ to Bob as Alice's key.
- E computes both DH keys aeP and bfP.
- $E$ decrypts everything from $A$ and reencrypts it to $B$ and vice versa.


## Practical problems

- Eve can set up a man-in-the-middle attack:

- $E$ chooses $e$ and $f$, presents $e P$ to Alice as Bob's key, and $f P$ to Bob as Alice's key.
- E computes both DH keys aeP and bfP.
- $E$ decrypts everything from $A$ and reencrypts it to $B$ and vice versa.
- This attack requires $E$ to be in charge of the network. We typically assume such strong attackers.
- This attack cannot be detected unless $A$ and $B$ compare their keys out of band.


## Semi-static DH

- A cryptosystem combining public-key and symmetric-key crypto is called a hybrid system ${ }^{1}$.
- Alice publishes long-term public key $P_{A}=a P$, keeps long-term private key a.
- Any user can encrypt to Alice using this key:
- Pick random $k$ and compute $R=k P$.
- Encrypt message $m$ using symmetric keys derived from $\operatorname{KDF}\left(k P_{A}\right)$, for key-derivation function KDF : $G \rightarrow\{0,1\}^{n}$,
- Send ciphertext c along with $R$.
- Alice decrypts, by obtaining symmetric key from

$$
\operatorname{KDF}(a R)=\operatorname{KDF}(a k P)
$$

[^0]
## Semi-static DH

- A cryptosystem combining public-key and symmetric-key crypto is called a hybrid system ${ }^{1}$.
- Alice publishes long-term public key $P_{A}=a P$, keeps long-term private key a.
- Any user can encrypt to Alice using this key:
- Pick random $k$ and compute $R=k P$.
- Encrypt message $m$ using symmetric keys derived from $\operatorname{KDF}\left(k P_{A}\right)$, for key-derivation function KDF : $G \rightarrow\{0,1\}^{n}$,
- Send ciphertext c along with $R$.
- Alice decrypts, by obtaining symmetric key from

$$
\operatorname{KDF}(a R)=\operatorname{KDF}(a k P)
$$

- Alice's key here is static, Bob's key is ephemeral.
- Note: ephemeral does not mean one-time; it means that is not long term.

[^1]
## Semi-static DH

- A cryptosystem combining public-key and symmetric-key crypto is called a hybrid system ${ }^{1}$.
- Alice publishes long-term public key $P_{A}=a P$, keeps long-term private key a.
- Any user can encrypt to Alice using this key:
- Pick random $k$ and compute $R=k P$.
- Encrypt message $m$ using symmetric keys derived from $\operatorname{KDF}\left(k P_{A}\right)$, for key-derivation function KDF: $G \rightarrow\{0,1\}^{n}$,
- Send ciphertext $c$ along with $R$.
- Alice decrypts, by obtaining symmetric key from

$$
\operatorname{KDF}(a R)=\operatorname{KDF}(a k P)
$$

- Alice's key here is static, Bob's key is ephemeral.
- Note: ephemeral does not mean one-time; it means that is not long term.
- Attacker solving DLP or CDHP can compute shared secret. Attacker solving DDHP can confirm guess.

[^2]
[^0]:    ${ }^{1}$ Now also used for combining pre-quantum and post-quantum systems.

[^1]:    ${ }^{1}$ Now also used for combining pre-quantum and post-quantum systems.

[^2]:    ${ }^{1}$ Now also used for combining pre-quantum and post-quantum systems.

