
Homework sheet 3, due 07 December 2023 at 13:30

Make sure to justify your answers in detail and to give clear arguments.
Document all steps, in particular of algorithms; it is not sufficient to state
the correct result without the explanation. If the problem statement asks for
usage of a particular algorithm other solutions will not be accepted even if
they give the correct result.
Submit your homework by encrypted and signed email to all four TAs (not
Tanja). Send one single email to all TAs togeher, do not send individual
emails to them; also cc your teammates. Do not forget to attach your public
key and the public key of anybody you put in cc.
Note: email clients do support support multiple recipients in one encrypted
email.

1. This exercise is about LFSRs. You know that A and B
use an LFSR with state size 6. You observe ciphertext

10100 10010 00101 11010

and know that start of the message was tue and that the following
encoding was used:

a -> 00000

b -> 00001

c -> 00010

...

z -> 11001

0 -> 11010

...

5 -> 11111

The ciphertext is the bitwise xor of the message with the output stream
of the LFSR. You don’t get to see the IV.

(a) Compute the first 15 bits of the LFSR output 2 point

(b) Compute the state of the LFSR at the beginning of the stream

output and the feedback coefficients of the LFSR. 6 point

(c) Compute the next character after tue. 2 point



Note that the encoding used above is the binary representation of the
integer associated to the letter

A B C D E F G H I J K L M N O P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q R S T U V W X Y Z 0 1 2 3 4 5

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2. The cipher you studied on exercise sheet 3 is RC4.

In RC4 we need to swap two states. This is easiest to do using an extra
variable, i.e., we copy S[i] to dummy, copy S[j] to S[i] and finally copy
dummy to S[j]. To save on storage space one might have the idea to
implement the swap in the following three steps:

(a) S[i]← S[i] xor S[j]

(b) S[j]← S[i] xor S[j]

(c) S[i]← S[i] xor S[j]

Explain first why this usually computes the correct S[i] and S[j]. Now
assume that this piece of code does the swap in the second part of
the code (after the key setup). Explain why this can go wrong and
state (with explanation) the expected number of steps until this goes
wrong for the first time. Explain what happens long term with this
implementation.
Note that there are multiple possibilities of what happens. I don’t
expect a full analysis. 5 points

3. This exercise expects you to brute force RC4 at “export-cipher”
strength (40 bit = 5 byte keys). Through some side-channel infor-
mation you learn that this key was set up for 2WF80 and that the first
byte key[0] = 80. Find a key that could have produced the following
output sequence:

130, 189, 254, 192, 238, 132, 216, 132, 82, 173.

Note: this should be a feasible computation on a Laptop, but don’t
start working on this on Wed evening. If it feels like more computation,
chances are that something is wrong in your approach or that you’re
using a very slow implementation. 5 points


