TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Introduction to Cryptology, Monday 22 January 2024

Name :
TU/e student number :

Exercise	1	2	3	4	5	6	total
points							

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.
This exam consists of 6 exercises. You have from 13:30-16:30 to solve them. You can reach 100 points.
Make sure to justify your answers in detail and to give clear arguments. Document all steps and intermediate results, in particular of algorithms; it is not sufficient to state the correct result without the explanation and the steps that lea. If the problem statement asks for usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are not allowed to use any books, notes, or other material.
You are allowed to use a simple, non-programmable calculator without networking abilities. Usage of laptops and cell phones is forbidden.

1. This exercise is about LFSRs. Do the following subexercises for the sequence

$$
s_{i+6}=s_{i+5}+s_{i+3}+s_{i} .
$$

(a) Draw the LFSR corresponding this sequence.

3 points
(b) State the characteristic polynomial f and compute its factorization. You do not need to do a Rabin irreducibility test but you do need to argue why a factor is irreducible.
Reminder: Factors may appear with multiplicity larger than one.
13 points
(c) Write the factorization of f from (b) in the form $f=\prod f_{i}^{e_{i}}$ with integers $e_{i}>0$ and f_{i} different irreducible polynomials, i.e., group equal factors. For each of the $f_{i}^{e_{i}}$ compute the order.

7 points
(d) What is the longest period generated by this LFSR?

Make sure to justify your answer.
3 points
(e) State the lengths of all subsequences so that each state of 6 bits appears exactly once.
Make sure to justify your answer and to check that all 2^{6} states are covered.

13 points
2. This exercise is about modes.

CCM is a mode for authenticated encryption which permits to authenticate additional data block A which is not encrypted but only authenticated. CCM is specified for a block cipher E_{k} with block length $n=128$. Let k denote the key shared by Alice and Bob. Here is a schematic description of the CCM mode.

Image credit: adapted from Håkon Jacobsen.
CCM is used with a nonce N, a string that must never repeat, and there are two fixed strings flags a $_{1}$ and flags $_{2}$. With that the initialization vector $I V$ and counter ctr are defined as follows
$I V=$ flags $_{1}| | N| |$ length $_{16}(A+M)$,
$\mathrm{ctr}=$ flags $_{2}\|N\| 0^{16}$,
Where 0^{16} denotes a vector of 16 zeros, and length ${ }_{16}(A+M)$ indicates the length of $A+M$ as a 16 -bit number
Let $E_{k}(M)$ denote encryption of a single block M using this block cipher with key k and let $D_{k}(C)$ denote decryption of a single block C using the block cipher with key k.

Let A be some additional data to be authenticated, $M_{i}, i=1,2, \ldots, \ell$ be the n-bit blocks holding the message, $C_{i}, i=1,2, \ldots \ell$ be the n-bit blocks holding the ciphertexts, and $C_{\ell+1}$ hold the authentication tag. The 64 in the drawing indicates that the authentication tag is limited to just 64 bits.
The ciphertext send is $N, A, C_{1}, C_{2}, \ldots, C_{\ell}, C_{\ell+1}$.
(a) Describe how authenticated encryption of long messages works by
writing $C_{1}, C_{\ell+1}$, and a general C_{i} in terms of ctr, A, M_{1}, M_{i}, and (if necessary) other M_{j} and C_{j}.

3 points
(b) Describe how decryption of long messages and verification of the authentication tag works by writing M_{1} and a general M_{i} in terms of ctr, A, C_{1}, C_{i}, and (if necessary) other M_{j} and C_{j} and describe how the authentication tag $C_{\ell+1}$ confirms the authenticity of the message and the additional data A. 3 points
(c) Assume that ciphertext C_{j} gets modified in transit. Show which message blocks get decrypted incorrectly and explain why others get decrypted correctly. Show how the authentication tag $C_{\ell+1}$ catches this error.
(d) Assume that the additional data A gets modified in transit. Show which message blocks get decrypted incorrectly and explain why others get decrypted correctly. Show how the authentication tag $C_{\ell+1}$ catches this error.
3. This problem is about RSA encryption. Let $p=313$ and $q=431$. Compute the public key using $e=65537$ and the corresponding private key.
Reminder: The private exponent d is a positive number.

8 points
4. This problem is about the DH key exchange. The public parameters are the group G and generator g, where $G=\left(\mathbb{F}_{1031}^{*}, \cdot\right)$ and $g=37$. Alice's public key is $h_{A}=123$. Bob's private key is $b=19$, Compute the DH key that Bob shares with Alice.

8 points
5. The integer $p=29$ is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in \mathbb{F}_{29}^{*} with generator $g=2$. Alice's public key is $h_{A}=g^{a}=10$. Use the Baby-Step Giant-Step method to compute Alice's private key a. Verify your result, i.e. compute g^{a}.

[^0]6. This exercise introduces the NTRU public-key encryption system which you will analyze. The system has two parameters: namely positive integers N, and prime q, where $\operatorname{gcd}(3, q)=1$ and q is much larger than 3.

All computations take place in $R=\mathbb{Z}[x] /\left(x^{N}-1\right)$, i.e. all elements are represented by polynomials of degree $<N$ and when multiplying polynomials we reduce modulo $x^{N}-1$. Some computations additionally reduce modulo 3 or modulo q.
The private key of user Alice is a polynomial $f \in R$. This polynomial is chosen randomly with the constraint that $1+3 f$ is invertible in R modulo q and that the coefficients are in $\{-1,0,1\}$. For an example with cryptographic sizes use $N=761, q=3449$ and pick f with exactly $w=286$ coefficients in $\{-1,1\}$ and the remaining $N-w=475$ coefficients are all 0 . We call a polynomial with these properties short.
To generate her public key, Alice picks a polynomial $g \in R$ with coefficients in $\{-1,0,1\}$ and computes $f_{q}=(1+3 f)^{-1}$ in R modulo q and $h=f_{q} \cdot g$ in R modulo q. Both steps require computing modulo $x^{N}-1$ and modulo q. Alice's public key is h along with the public parameters q and N.
To encrypt message ($m_{0}, m_{1}, \ldots, m_{N-1}$) with coefficients in $\{-1,0,1\}$ to Alice, who has public key h, put $m(x)=\sum m_{i} x^{i} \in R$, take a random short polynomial $r(x) \in R$ and compute $c=3 r \cdot h+m$, where the computations happen modulo $x^{N}-1$ and modulo q.
To decrypt ciphertext c Alice uses her private key f and computes $a=$ $(1+3 f) \cdot c$ in R modulo q, choosing coefficients in $[-(q-1) / 2,(q-1) / 2]$. [If you're a mathematician, this means you lift a to R, i.e. forget about the reduction modulo $q]$. Then she computes $m^{\prime} \equiv a \bmod 3$, taking coefficients from $\{-1,0,1\}$.
In the decryption step, Alice combines computations modulo q and modulo 3. However, these are coprime numbers and thus these computations are not compatible. To see this, take $q=17$ for a small example: then $12 \equiv 0 \bmod 3$ and $29 \equiv 2 \bmod 3$ while 12 and 29 are in the same residue class modulo 17 , i..e, $29 \equiv 12 \bmod 17$. NTRU avoids this problem of non-unique results by first reducing modulo q to an integer in $[-(q-1) / 2,(q-1) / 2]$ and then reducing modulo 3 . In this example this would require computing $12 \equiv-5 \bmod 17$, using a result in $[-8,8]$, which then gets reduced modulo 3 as $-5 \equiv 1 \bmod 3$, using a result in $\{-1,0,1\}$.
(a) Show that the system correctly recovers the message, i.e., that $m=m^{\prime}$.
The next exercise will go into more detail on mixing reductions modulo q and modulo 3. Here you can assume that all reductions modulo q give the correct residue class.

6 points
(b) In (a) you computed an expression for the polynomial a before reduction modulo 3. Decryption works correctly if each coefficient of this expression is in $[-(q-1) / 2,(q-1) / 2]$.
To check if this is the case here, compute the maximum possible size of the coefficients of $r g$. Remember that r and g have coefficients in $\{-1,0,1\}$ and that r is further limited to having only w non-zero coefficients.
With this result compute the maximum possible size of the coefficients of a as an expression in w. Then verify that for the concrete parameters given above, $N=761, q=3449$ and $w=286$, decryption works correctly.

6 points
(c) Bob misunderstands the meaning of "short" and, in addition to using the correct restrictions, he also limits the degree of r to less than w so that r has the form $r(x)=\sum_{i=0}^{w-1} r_{i} x^{i}$ with $r_{i} \in\{-1,1\}$. He also does not have a lot to say, so his messages use only the first 200 coefficients of m, i., e., $m(x)=\sum_{i=0}^{199} m_{i} x^{i}$.
Find an efficient way to recover m given c. Note that the degrees of r and m are too large to permit a brute-force search.

Hint: Write the computation of $3 r h$ modulo $x^{N}-1$ as a vectormatrix multiplication $3 R \cdot H$, where R is a vector of length w taking the first w coefficients of r, and H is a $w \times N$ matrix covering multiplication by h and reduction modulo $x^{N}-1$ so that the first 3 rows of the matrix (corresponding to $1 \cdot h, x \cdot h$, and x^{2}. $h)$ are $\left(h_{0}, h_{1}, h_{2}, \ldots, h_{N-2}, h_{N-1}\right),\left(h_{N-1}, h_{0}, h_{1}, \ldots, h_{N-3}, h_{N-2}\right)$, and ($h_{N-2}, h_{N-1}, h_{0}, \ldots, h_{N-4}, h_{N-3}$) because computing modulo $x^{N}-1$ replaces x^{N} by 1 .
In this representation recover r and then m.
7 points

[^0]: 12 points

