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Notes: Please hand in this sheet at the end of the exam. You may keep the
sheet with the exercises.

This exam consists of 6 exercises. You have from 13:30 — 16:30 to solve them.
You can reach 100 points.

Make sure to justify your answers in detail and to give clear arguments.
Document all steps and intermediate results, in particular of algorithms; it is
not sufficient to state the correct result without the explanation and the steps
that lea. If the problem statement asks for usage of a particular algorithm
other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU /e letterhead; should you require more
sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are not allowed to use any books, notes, or other material.

You are allowed to use a simple, non-programmable calculator without net-
working abilities. Usage of laptops and cell phones is forbidden.
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1. This exercise is about LFSRs. Do the following subexercises for the
sequence

(a)
(b)

Si+6 = Si+5 T Sit3 1+ S;.

Draw the LFSR corresponding this sequence. 3 points

State the characteristic polynomial f and compute its factoriza-
tion. You do not need to do a Rabin irreducibility test but you
do need to argue why a factor is irreducible.

Reminder: Factors may appear with multiplicity larger than one.
13 points

U

Write the factorization of f from (b) in the form f =[] f{* with
integers e; > 0 and f; different irreducible polynomials, i.e., group
equal factors.

For each of the f{* compute the order.
What is the longest period generated by this LFSR?
Make sure to justify your answer.

State the lengths of all subsequences so that each state of 6 bits
appears exactly once.

Make sure to justify your answer and to check that all 2 states
are covered. 13 points
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2. This exercise is about modes.

CCM is a mode for authenticated encryption which permits to
authenticate additional data block A which is not encrypted but only
authenticated. CCM is specified for a block cipher Ej with block
length n = 128. Let k denote the key shared by Alice and Bob. Here
is a schematic description of the CCM mode.
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Image credit: adapted from Hakon Jacobsen.

CCM is used with a nonce N, a string that must never repeat, and
there are two fixed strings flags, and flags,. With that the initialization
vector IV and counter ctr are defined as follows

IV = flags, || N||length,s(A + M),

ctr = flags,||V||0'°,

Where 0'® denotes a vector of 16 zeros, and length,4(A + M) indicates
the length of A 4+ M as a 16-bit number

Let Ex(M) denote encryption of a single block M using this block
cipher with key k and let Dy (C) denote decryption of a single block C
using the block cipher with key k.

Let A be some additional data to be authenticated, M;,7 = 1,2,...,¢
be the n-bit blocks holding the message, C;,7 = 1,2,...¢ be the n-bit
blocks holding the ciphertexts, and Cyy; hold the authentication tag.
The 64 in the drawing indicates that the authentication tag is limited
to just 64 bits.

The ciphertext send is N, A, C1,Cs, ..., Cy, Coiq.

(a) Describe how authenticated encryption of long messages works by


https://www.iacr.org/authors/tikz/tikz/Modes/ccm.tex
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writing C, Cyyq, and a general C; in terms of ctr, A, My, M;, and
(if necessary) other M; and Cj. 3 points

(b) Describe how decryption of long messages and verification of the
authentication tag works by writing M; and a general M; in terms
of ctr, A, Cy, C;, and (if necessary) other M; and C; and describe
how the authentication tag C,,; confirms the authenticity of the
message and the additional data A. 3 points

(c) Assume that ciphertext C; gets modified in transit. Show which
message blocks get decrypted incorrectly and explain why others
get decrypted correctly. Show how the authentication tag Cyiq
catches this error. 5 points

(d) Assume that the additional data A gets modified in transit. Show
which message blocks get decrypted incorrectly and explain why
others get decrypted correctly. Show how the authentication tag
Cyy1 catches this error. 3 points

3. This problem is about RSA encryption. Let p = 313 and ¢ = 431.
Compute the public key using e = 65537 and the corresponding private

key.
Reminder: The private exponent d is a positive
e,

4. This problem is about the DH key exchange. The public parameters
are the group G and generator g, where G = (IFjy3,,-) and g = 37.
Alice’s public key is hy, = 123. Bob’s private key is b = 19,

Compute the DH key that Bob shares with Alice. 8 points

5. The integer p = 29 is prime. You are the eavesdropper and know
that Alice and Bob use the Diffie-Hellman key-exchange in I3y with
generator g = 2. Alice’s public key is hy = g* = 10. Use the Baby-Step
Giant-Step method to compute Alice’s private key a.

Verify your result, i.e. compute g*. 12 points
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6. This exercise introduces the NTRU public-key encryption system which
you will analyze. The system has two parameters: namely positive
integers N, and prime ¢, where ged(3,¢) = 1 and ¢ is much larger than
3.

All computations take place in R = Z[x]/(z" — 1), i.e. all elements
are represented by polynomials of degree < N and when multiplying
polynomials we reduce modulo 2% —1. Some computations additionally
reduce modulo 3 or modulo gq.

The private key of user Alice is a polynomial f € R. This polynomial
is chosen randomly with the constraint that 1 4 3f is invertible in R
modulo ¢ and that the coefficients are in {—1,0,1}. For an example
with cryptographic sizes use N = 761,q = 3449 and pick f with ex-
actly w = 286 coefficients in {—1,1} and the remaining N —w = 475
coefficients are all 0. We call a polynomial with these properties short.

To generate her public key, Alice picks a polynomial ¢ € R with coef-
ficients in {—1,0,1} and computes f, = (14 3f)~! in R modulo ¢ and
h = f,-gin R modulo q. Both steps require computing modulo z¥ — 1
and modulo ¢. Alice’s public key is h along with the public parameters
g and N.

To encrypt message (mg, my, ..., my_1) with coefficients in {—1,0,1}
to Alice, who has public key h, put m(z) = > m;z’ € R, take a
random short polynomial 7(z) € R and compute ¢ = 3r - h +m, where
the computations happen modulo " — 1 and modulo g.

To decrypt ciphertext ¢ Alice uses her private key f and computes a =
(1+3f)-cin R modulo ¢, choosing coefficients in [—(¢—1)/2, (¢—1)/2].
[If you're a mathematician, this means you lift a to R, i.e. forget about
the reduction modulo g|. Then she computes m’ = a mod 3, taking

coefficients from {—1,0,1}.

In the decryption step, Alice combines computations modulo ¢ and
modulo 3. However, these are coprime numbers and thus these com-
putations are not compatible. To see this, take ¢ = 17 for a small
example: then 12 = 0 mod 3 and 29 = 2 mod 3 while 12 and 29 are in
the same residue class modulo 17, i..e, 29 = 12 mod 17. NTRU avoids
this problem of non-unique results by first reducing modulo ¢ to an
integer in [—(q¢ — 1)/2, (¢ — 1)/2] and then reducing modulo 3. In this
example this would require computing 12 = —5 mod 17, using a result
in [—8, 8], which then gets reduced modulo 3 as —5 = 1 mod 3, using
a result in {—1,0,1}.
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(a)

Show that the system correctly recovers the message, i.e., that
m=m'.

The next exercise will go into more detail on mixing reductions
modulo ¢ and modulo 3. Here you can assume that all reductions

modulo ¢ give the correct residue class.

In (a) you computed an expression for the polynomial a before re-
duction modulo 3. Decryption works correctly if each coefficient
of this expression is in [—(¢ — 1)/2, (¢ — 1)/2].

To check if this is the case here, compute the maximum possible
size of the coefficients of rg. Remember that r» and g have coeffi-
cients in {—1,0,1} and that r is further limited to having only w
non-zero coefficients.

With this result compute the maximum possible size of the coeffi-
cients of a as an expression in w. Then verify that for the concrete
parameters given above, N = 761, ¢ = 3449 and w = 286, decryp-
tion works correctly. 6 points

Bob misunderstands the meaning of “short” and, in addition to
using the correct restrictions, he also limits the degree of r to less
than w so that r has the form r(z) = S ' ria? with r; € {—1,1}.
He also does not have a lot to say, so his messages use only the
first 200 coefficients of m, i., e., m(z) = S 1% mx.

Find an efficient way to recover m given c. Note that the degrees
of r and m are too large to permit a brute-force search.

Hint: Write the computation of 3rh modulo %V — 1 as a vector-
matrix multiplication 3R - H, where R is a vector of length w
taking the first w coefficients of r, and H is a w x N matrix
covering multiplication by A and reduction modulo " — 1 so that
the first 3 rows of the matrix (corresponding to 1-h,z-h, and 22
h) are (ho, hl, hg, ey hN,Q, thl), (thl, ho, hl, R ,thg, hN,Q),
and (hy_2,hn_1,h0, ..., hn_4, hy_3) because computing modulo
2V — 1 replaces V¥ by 1.

In this representation recover r and then m.



