TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Introduction to Cryptology, Monday 17 April 2023

Name :
TU/e student number :

Exercise	1	2	3	4	total
points					

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.
This exam consists of 4 exercises. You have from 18:00-21:00 to solve them. You can reach 100 points.
Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem statement asks for usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are not allowed to use any books, notes, or other material.
You are allowed to use a simple, non-programmable calculator without networking abilities. Usage of laptops and cell phones is forbidden.

1. This exercise is about LFSRs. Do the following subexercises for the sequence

$$
s_{i+6}=s_{i+5}+s_{i+4}+s_{i} .
$$

(a) Draw the LFSR corresponding this sequence.

3 points
(b) State the characteristic polynomial f and compute its factorization. You do not need to do a Rabin irreducibility test but you do need to argue why a factor is irreducible.

10 points
(c) For each of the factors of f compute the order.

6 points
(d) What is the longest period generated by this LFSR?

Make sure to justify your answer.
3 points
(e) State the lengths of all subsequences so that each state of 6 bits appears exactly once.
Make sure to justify your answer and to check that all 2^{6} states are covered.

10 points
2. This exercise is about modes.

Here is a schematic description of the CBC-CBC mode.

Image credit: adapted from Jérémy Jean.
Enc is an n-bit block cipher. Alice and Bob share a key k for Enc. Let $\mathrm{Enc}_{k}(m)$ denote encryption of a single block m using this block cipher with key k and let $\operatorname{Dec}_{k}(c)$ denote decryption of a single block c using the block cipher with key k. Let IV be the initialization vector of length n, let $M_{i}, i=0,1,2, \ldots$ be the n-bit blocks holding the message and $C_{i}, i=0,1,2, \ldots$ be the n-bit blocks holding the ciphertexts.
(a) Describe how encryption of long messages works by writing C_{0} and a general C_{i} in terms of IV, M_{0}, M_{i}, and (if necessary) other M_{j} and C_{j}. Describe how decryption of long messages works by writing M_{0} and a general M_{i} in terms of IV, C_{0}, C_{i}, and (if necessary) other M_{j} and C_{j}.
(b) Alice sends two messages, m and $m^{\prime \prime}$ which differ only in one block M_{i} and she uses the same IVs.
Investigate and describe which blocks of the respective ciphertexts c and c^{\prime} differ. Note that i can take any value including 0 and $t-1$.

$$
6 \text { points }
$$

(c) Assume that ciphertext c gets modified in transit to c^{\prime} and that c^{\prime} and c which differ only in one block C_{j}.

Investigate and describe which blocks in the resulting plaintext m^{\prime} after decryption differ from the correct plaintext m. Note that j can take any value including 0 and $t-1$. The IVs are transmitted correctly.
3. This problem is about schoolbook RSA encryption.
(a) Let $p=547$ and $q=569$. Compute the public key using $e=31$ and the corresponding private key.
Reminder: The private exponent d is a positive number.
(b) Describe in your own words how encryption works for schoolbook RSA and why decryption yields the correct message.

6 points
(c) Three different parties A, B, and C each have their own RSA modulus n_{A}, n_{B}, and n_{C}, respectively, and all use $e=3$, i.e. use keys $\left(n_{A}, 3\right),\left(n_{B}, 3\right)$, and $\left(n_{C}, 3\right)$. Describe in your own words how an attacker can obtain plaintext m if m is encrypted to A, B, and C using schoolbook encryptions.
Your answer should state the steps the attacker needs to perform and explain why the attack works. You may assume that n_{A}, n_{B}, and n_{C} are coprime.

11 points
4. This exercise is about the signature system in \mathbb{F}_{p}^{*}. In this system everybody knows prime p and a generator g of (a subgroup of) \mathbb{F}_{p}^{*} order ℓ, where ℓ divides $p-1$.
In KeyGen, user Alice picks a random $a \in[1, \ell-1]$ as her private key and computes $h_{A}=g^{a}$ as her public key.
To sign a message m she picks a random $k \in[1, \ell-1]$ and computes $r=g^{k}, H=$ hash (r, m), and

$$
s \equiv k-H \cdot a \bmod \ell .
$$

The signature is the pair (r, s) which gets sent along with m.
Note that r is computed in \mathbb{F}_{p}^{*}, i.e., computing modulo p and that s is computed modulo ℓ.
To verify that (r, s) is a valid signature on m by the user with public key h_{A}, one computes $H=\operatorname{hash}(r, m)$ and checks that

$$
r=g^{s} \cdot h_{A}^{H} .
$$

If this equation holds the signature is valid, else invalid.
(a) Let $p=107, \ell=106$, and $g=2$. Perform KeyGen for Alice with $a=68$.
Then compute a signature using $k=42$ and $H=23$.
Note that computing H requires first computing r but we do not have such a small hash function anyways. This example is mostly for expository reasons so that that you go through all steps.
Make sure to document all intermediate steps for KeyGen and signing. 7 points
(b) Explain why the signature system works, i.e., why a signature made using Alice's private key a passes verification using h_{A}.
Explain also what problems an attacker faces in forging a signature, i.e., in computing a pair (r, s) that passes verification for his choice of m and a fixed h_{A} without having access to the private key a.
(c) It is very important for Schnorr's signature system that r is included when computing H. Show how you can forge a signature for Alice if the definition was $H=\operatorname{hash}(m)$.

