Name:

Student number:

<table>
<thead>
<tr>
<th>Exercise</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.
This exam consists of 6 exercises. You have from 14:00 – 17:00 to solve them. You can reach 50 points.
Make sure to justify your answers in detail and to give clear arguments.
Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.
Do not write in red or with a pencil.
You are allowed to use any books and notes. You are not allowed to use the textbooks of your colleagues.
You are allowed to use a simple, non-graphical pocket calculator. Usage of laptops and cell phones is forbidden.
1. What do the Gilbert-Varshamov, Singleton, Griesmer, and Hamming bound say about the dimension of a binary, linear code of length 11 and minimum distance 5.

2. Let the public key of user U in the McEliece system be

$$G_U = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}$$

over \mathbb{F}_2 and let $w = 1$ (the number of errors one can add in the encryption). Demonstrate the usage of the McEliece cryptosystem by encrypting $m = (100)$.

3. This exercise is about constructing codes starting from a Hamming code. Let C be a binary Hamming code of dimension 4.

 (a) State the parameters (length, dimension, redundancy, minimum distance) and parity check matrix of C.

 (b) State the parameters (length, dimension, minimum distance) and parity check matrix of the extended code C^{ext} of C.

 (c) Give the parameters of the concatenated code that one contains when using C^{ext} as inner code and a 2^4-ary Hamming code with redundancy 3 as outer code.

4. This exercise is about computing discrete logarithms in some groups.

 (a) The integer $p = 10037$ is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator $g = 1234$. You observe $h_a = 2345$ and $h_b = 4567$. What is the shared key of Alice and Bob?

 (b) The order of 5 in \mathbb{F}_{73}^* is 72. Charlie uses the subgroup generated by $g = 5$ for cryptography. His public key is $g_c = 2$. Use the Pohlig-Hellman method to compute an integer c so that $g_c \equiv g^c \pmod{73}$.
5. (a) Find all affine points on the Edwards curve
\[x^2 + y^2 = 1 - 3x^2y^2 \] over \(\mathbb{F}_{11} \).
4 points

(b) Verify that \(P = (2, 2) \) is on the curve. Compute the order of \(P \).
3 points

(c) Translate the curve and \(P \) to Montgomery form
\[Bv^2 = u^3 + Au^2 + u. \]
2 points

6. The Hill cipher is a secret-key system based on matrices. It takes a message in the English alphabet (26 characters), translates the characters into numbers as given below, and then encrypts the message by encrypting \(n \) numbers at a time as follows:

Let the secret key \(M \) be an \(n \times n \) matrix over \(\mathbb{Z}/26\mathbb{Z} \) which is invertible and let the plaintext \(a \) be the vector \((a_1, a_2, \ldots, a_n) \in (\mathbb{Z}/26\mathbb{Z})^n \).

The corresponding ciphertext is \(c^T = Ma^T \). To decrypt compute \(a^T = M^{-1}c^T \).

(a) Let
\[
M = \begin{pmatrix}
2 & 1 & 1 \\
1 & 3 & 2 \\
1 & 3 & 1
\end{pmatrix}.
\]
Encrypt the text CRYPTO
3 points

(b) Let \(M \) be a \(2 \times 2 \) matrix. You know that \((1, 3)^T \) was encrypted as \((-9, -2)^T \) and that \((7, 2)^T \) was encrypted as \((-2, 9)^T \). Find the secret key \(M \).
6 points

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>