Summer School on Elliptic and Hyperelliptic Curve Cryptography

Exercises for lectures on Tuesday, 04.09.2007

1. Let p be prime, and let \mathbb{F}_{p} be the finite field with p elements.
(a) Let $\alpha, \beta \in \mathbb{F}_{p}^{*}$ be non-squares. Prove that the product $\alpha \beta$ is a square.
(b) Let E / \mathbb{F}_{p} be the elliptic curve defined by the Weierstrass equation $Y^{2}=X^{3}+$ $a X+b$, and let $t=p+1-\# E\left(\mathbb{F}_{p}\right) \in \mathbb{Z}$. By Hasse's Theorem (see Dan Bernstein's talk) $|t| \leq 2 \sqrt{p}$.
For a non-square $g \in \mathbb{F}_{p}^{*}$, define the curve $E_{g}: Y^{2}=X^{3}+g^{2} a X+b g^{3}$. Prove that E_{g} has $p+1+t$ points. ('The' curve E_{g} is called the quadratic twist of E.)
2. An elliptic curve E defined over $\mathbb{F}_{q}, q=p^{r}$ is supersingular if one of the following equivalent conditions holds
(a) $E\left[p^{s}\right]\left(\overline{\mathbb{F}}_{q}\right)=\left\{P_{\infty}\right\}$ (for $s \in \mathbb{N}$).
(b) $\left|E\left(\mathbb{F}_{q}\right)\right|=q-t+1$ with $t \equiv 0 \bmod p$.
(c) End_{E} is order in quaternion algebra.

Show that an elliptic curve of the form $y^{2}+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{3} \in$ $\mathbb{F}_{2^{n}}^{*}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{2^{n}}$ is non-singular. Show that such elliptic curves are supersingular. Hint: use the criterion on the 2-torsion.
3. Consider $C: y^{2}=x^{5}+4 x^{3}+3 x^{2}+11 x+5$ over \mathbb{F}_{17}. Find at least one divisor class defined over \mathbb{F}_{17} where in the Mumford representation u is irreducible of degree 2. This is almost Exercise 8 from yesterday, but with the restriction that here u should be irreducible.
4. Show that for $p \equiv 2 \bmod 3$ the curve $E_{b} / \mathbb{F}_{p}: y^{2}=x^{3}+b$ has $\left|E_{b}\left(\mathbb{F}_{p}\right)\right|=p+1$.

Thus the embedding degree for this curve is ≤ 2 as any prime r with $r \mid p+1$ also divides $p^{2}-1=(p-1)(p+1)$. Verify that there is a distortion map $\varphi: E_{b}\left(\mathbb{F}_{p}\right) \rightarrow E_{b}\left(\mathbb{F}_{p^{2}}\right)$ defined by $\varphi(x, y) \mapsto\left(\xi_{3} x, y\right)$ mapping to $E_{b}\left(\mathbb{F}_{p^{2}}\right) \backslash E_{b}\left(\mathbb{F}_{p}\right) \cup\left\{P_{\infty}\right\}$, where ξ_{3} is a third root of unity in $\mathbb{F}_{p^{2}}$.
5. Let $p=5387$. In that case $\mathbb{F}_{p}^{*}=\langle 2\rangle$ is generated by 2 . We want to solve the DLP $h=2^{x}$ in \mathbb{F}_{p}^{*} using the factor base $\mathcal{F}(11)=\{2,3,5,7,11\}$. Hints:
(a) To find relations try arbitrary exponents - or use 2^{r} for $r \in$ $\{1067,3721,4409,1619,2072,4200,4806\}$.
(b) Compute the discrete logarithm $x(q)$ for all elements q in the factorbase $q=$ $2^{x(q)}$. E.g. the exponent 1619 directly gives the discrete logarithm of 7 .
(c) Finally find a power y of 2 so that $h \cdot 2^{y}$ is B-smooth. If you are desperate, try $y=145$.
6. The DLP in $\operatorname{Pic}_{C}^{0}\left(\mathbb{F}_{2^{n}}\right)$ of the genus 9 hyperelliptic curve C given by $C: y^{2}+y=$ $x^{19}+x^{17}+x+1$ should be weak under index calculus attacks.
Find all divisor classes with irreducible u of degree ≤ 3 defined over \mathbb{F}_{2}.

