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What is a Hash Function?

[DH76] There is, however, a modification which
eliminates the expansion problem when N is roughly
a megabit or more. Let g be a one-way mapping
from binary N-space to binary n-space where n is
approximately 50. Take the N bit message m and
operate on it with g to obtain the n bit vector m′.
Then use the previous scheme to send m′. . .
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What is a Hash Function? (cont.)

◮ (Cryptographic) Hash Functions are means to securely

reduce a string m of arbitrarily length into a fixed-length
digest.
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What is a Hash Function? (cont.)

◮ (Cryptographic) Hash Functions are means to securely

reduce a string m of arbitrarily length into a fixed-length
digest.

◮ The main problem is the definition of securely.

◮ For signature schemes, two basic requirements exist:

1 Second preimage resistance: given x , it is hard to find x ′

s.t. h(x) = h(x ′).
2 Collision resistance: it is hard to find x1, x2 s.t.

h(x1) = h(x2).
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What is a Hash Function? (cont.)

◮ (Cryptographic) Hash Functions are means to securely

reduce a string m of arbitrarily length into a fixed-length
digest.

◮ The main problem is the definition of securely.

◮ For signature schemes, three basic requirements exist:

1 Preimage resistance: given y = h(x), it is hard to find x

(or x ′, s.t., h(x ′) = y).
2 Second preimage resistance: given x , it is hard to find x ′

s.t. h(x) = h(x ′).
3 Collision resistance: it is hard to find x1, x2 s.t.

h(x1) = h(x2).
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What is a Hash Function? (cont.)

◮ Hash functions were quickly adopted in other places:
◮ Password files (storing h(pwd , salt) instead of pwd).
◮ Bit commitments schemes (commit — h(b, r), reveal —

b, r).
◮ Key derivation functions (take k = h(gxy mod p)).
◮ MACs (long story).
◮ Tags of files (to detect changes).
◮ Inside PRNGs.
◮ Inside protocols (used in many “imaginative” ways).
◮ . . .
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What Do We Want Out of Our Hash Functions?

If two people laid hold of a tallit and one says “it’s
all mine”, and the other one says “it’s all mine”.
What is done?
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What Do We Want Out of Our Hash Functions?

If two people laid hold of a tallit and one says “it’s
all mine”, and the other one says “it’s all mine”.
What is done? Division in half.

(Mishna Bava Metsia 1:1)
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What Do We Want Out of Our Hash Functions?

If two people laid hold of a tallit and one says “it’s
all mine”, and the other one says “it’s all mine”.
What is done? Division in half.

(Mishna Bava Metsia 1:1)

If two cryptographers defined the security notions of
a hash function and one says “it’s important to have
pseudo-randomness”, and the other one says “it’s all
in the everywhere second preimage resistance”.
What is done?
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What Do We Want Out of Our Hash Functions?

As hash functions are widely used, various requirements are
needed to ensure the security of construction based on hash
functions:

◮ Collision resistance — signatures, bit commitment (for
binding), MACs.

◮ Second preimage resistance — signatures.

◮ Preimage resistance — signatures (RSA, or other
TD-OWP), password files, bit commitment (for hiding).

◮ Pseudo Random Functions — key derivation, MACs.

◮ Pseudo Random Oracle — protocols, PRNGs.

Orr Dunkelman Hash Functions — Much Ado about Something 8/ 69



Introduction MD New Results I New Results II Future Definition CR Sec/Pre PRO/PRF UOWHF

What Do We Really Want Out of Our Hash

Functions?

We want the hash function to behave in a manner which
would prevent any attacker from doing anything malicious to
inputs to the hash function:

◮ One-wayness (no inversion).

◮ No collisions (up to the birthday bound).

◮ No second preimages.

◮ Outputs which are nicely distributed.

◮ . . .

Therefore, the ideal hash function attaches for each possible
message M a random value as h(M). And voilá — a random
oracle.
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Collision Resistance of Hash Functions

Let us try to define when h(·) is collision resistant.
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Collision Resistance of Hash Functions

Let us try to define when h(·) is collision resistant.

◮ It is computationally infeasible to find a collision.
Formally: There is no efficient algorithm which given h
finds collisions.
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Collision Resistance of Hash Functions

Let us try to define when h(·) is collision resistant.

◮ It is computationally infeasible to find a collision.
Formally: There is no efficient algorithm which given h
finds collisions.

◮ h(·) is a hash function. Therefore, necessarily there exist
a, b s.t. h(a) = h(b). Consider the algorithm:

print a, b.
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Collision Resistance of Hash Functions

Let us try to define when h(·) is collision resistant.

◮ It is computationally infeasible to find a collision.
Formally: There is no efficient algorithm which given h
finds collisions.

◮ h(·) is a hash function. Therefore, necessarily there exist
a, b s.t. h(a) = h(b). Consider the algorithm:

print a, b.

◮ What shall we do?
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Collision Resistance of Hash Functions (cont.)

◮ Practical solution — a and b are unknown. For any
specific function finding them takes O(1) anyway. So who
cares?
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Collision Resistance of Hash Functions (cont.)

◮ Practical solution — a and b are unknown. For any
specific function finding them takes O(1) anyway. So who
cares?

◮ Theoretical solution (I) — let us define a family of hash
functions, and bundle the collision resistance of one of
them to the collision resistance of the family.

◮ But how?
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The Collision Resistance Game [RS04]

◮ Define a family of hash functions H = {h1, h2, . . .}.

◮ The adversary is given a random k, and has to produce a
collision for hk .

◮ If |H| is exponential, and the adversary has polynomial
memory, this prevents him from storing (ai , bi) for all hi .

◮ The adversary’s advantage is then:

AdvColl
H = Pr

[

K
$
←− K; (M , M ′)

$
←− A(K ) :

M 6= M ′ ∧ hK (M) = hK (M ′)
$
←−
]
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Collision Resistance of Hash Functions (cont.)

◮ Theoretical solution (II) — we do not know the value of
a, b for a specific hash function. Thus, let us define a
protocol Π, which uses a hash function h(·), such that we
can show that every attacker A against Π yields an attack
on h(·) [R05].
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Collision Resistance of Hash Functions (cont.)

◮ Theoretical solution (II) — we do not know the value of
a, b for a specific hash function. Thus, let us define a
protocol Π, which uses a hash function h(·), such that we
can show that every attacker A against Π yields an attack
on h(·) [R05].

◮ But how can we construct Π? We should agree in
advance on such a Π which is secure assuming h(·) is
collision resistant.

◮ See the paper for some details which constructions we all
assume to be OK if the underlying hash function is
collision resistant.
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Other Security Properties

◮ Second preimage — when the hash function is keyed the
game is:

◮ Choose K at random, choose M at random.
◮ Give the adversary K ,M, and ask for a second preimage

M ′. The formal advantage is

Adv
Sec[m]
H = Pr

[

K
$
←− K;M

$
←− {0, 1}m;M ′ $

←− A(K ,M) :

M 6= M ′ ∧ hK (M) = hK (M ′)
$
←−
]

◮ Note that the length of the message is embedded into
definition to ensure that we are not biased towards (too)
long messages, and to avoid problems arising from (too)
small message spaces.
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Other Security Properties (cont.)

◮ Maybe there are weak “keys”?
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Other Security Properties (cont.)

◮ Maybe there are weak “keys”?
◮ Always second preimage — the key is chosen to be the

“worst” from security point of view (rather than
randomly). The advantage:

Adv
aSec[m]
H = max

K∈K

{

Pr
[

M
$
←− {0, 1}m; M ′ $

←− A(K , M) :

M 6= M ′ ∧ hK (M) = hK (M ′)
$
←−
]}
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Other Security Properties (cont.)

◮ Maybe there are weak “keys”?
◮ Always second preimage — the key is chosen to be the

“worst” from security point of view (rather than
randomly). The advantage:

Adv
aSec[m]
H = max

K∈K

{

Pr
[

M
$
←− {0, 1}m; M ′ $

←− A(K , M) :

M 6= M ′ ∧ hK (M) = hK (M ′)
$
←−
]}

◮ Everywhere second preimage — the message is chosen to
be the “worst”. The advantage:

Adv
eSec[m]
H = max

M∈{0,1}m

{

Pr
[

K
$
←− K; M ′ $

←− A(K , M) :

M 6= M ′ ∧ hK (M) = hK (M ′)
$
←−
]}
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Other Security Properties (cont.)

◮ Preimage resistance — pick K at random, a message M
at random, give the adversary hK (M) and ask for a
preimage.

◮ Always preimage resistance — take the worst K , repeat.

◮ Everywhere preimage resistance — take the worst
possible hash value, repeat.

◮ When discussing preimage resistance, people might wish to take a
random digest. This may lead to a “secure” case becoming insecure
(i.e., changing Pre to be ePre).
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Even More Security Definition

◮ Pseudorandom function — If the primitive is keyed, then
any adversary cannot distinguish between an instance
chosen by a random key, and a random function with the
same parameters (input/output size). The advantage:

Adv prf
H = Pr

[

K
$
←− K; AH(K ,·) = 1

]

− Pr
[

Ah(·) = 1
$
←−
]

.

The main issue with hash functions is the way to key
them (and the compression function). A good mode of
iteration would preserve the “PRFness” of its compression
function.
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Even More Security Definition (cont.)

◮ Pseudorandom oracle — Does the hash function is
indistinguishable from a random oracle?
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Even More Security Definition (cont.)

◮ Pseudorandom oracle — Does the hash function is
indistinguishable from a random oracle?

◮ Of course it is easy to distinguish any hash function from
a random oracle.
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Even More Security Definition (cont.)

◮ Pseudorandom oracle — Does the hash function is
indistinguishable from a random oracle?

◮ Of course it is easy to distinguish any hash function from
a random oracle.

◮ But let us assume that we are given a random oracle as a
compression function (FIL-RO). Is the hash function now

is indistinguishable from a random oracle?

◮ The security game is very different.

Orr Dunkelman Hash Functions — Much Ado about Something 18/ 69



Introduction MD New Results I New Results II Future Definition CR Sec/Pre PRO/PRF UOWHF

Indistinguishability from Random Oracle

◮ There is the hash function which has access to a FIL-RO.

◮ There is a simulator which has access to a VIL-RO.

◮ The adversary can query either the hash and the FIL-RO,
or the simulator and the VIL-RO.

◮ The advantage is the success of the adversary
distinguishing between the two cases.

H(·) ROF ROV S

A
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Universal One-Way Hash Functions

◮ Introduced by Naor & Yung in 1989 to overcome the
collision-resistance “problem”.

◮ Let H be a family of hash functions H = {h1, h2, . . . , hk}.

◮ H is UOWHF if for all x :

Pr
k

$
←−K

[A(hk , x) = y |hk(x) = hk(y) ∧ x 6= y ]

◮ This property is the Target Collision Resistance which is
the same as eSec.

◮ This means that for a specific hi , it might be easy to find
collisions, but not for all functions in H.
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The Merkle-Damg̊ard Construction

◮ Presented by Merkle and Damg̊ard independently as an
answer to the following problem:

◮ Given a compression function
f : {0, 1}mc × {0, 1}n → {0, 1}mc , how would you
generate a hash function Hf : {0, 1}∗ → {0, 1}m.
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The Merkle-Damg̊ard Construction

◮ Presented by Merkle and Damg̊ard independently as an
answer to the following problem:

◮ Given a compression function
f : {0, 1}mc × {0, 1}n → {0, 1}mc , how would you
generate a hash function Hf : {0, 1}∗ → {0, 1}m.

◮ The solution is as follows:

1 Pad the message M to a multiple of b (with 1, and
many 0’s as needed and the length of the message).

2 Divided the padded message into l blocks m1m2 . . . ml .
3 Set h0 = IV .
4 For i = 1 to l , do hi = f (hi−1,mi ).
5 Output hl (or some function of it).
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The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .
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The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .
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The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .

◮ The same is true for finding a preimage (because you can
use it to find a second preimage).
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The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .

◮ The same is true for finding a preimage (because you can
use it to find a second preimage).

To conclude, if f is collision resistant (i.e., it takes O(2mc/2)
invocations to find a collision), then Hf is collision resistant
and (second) preimage resistant with security level of
O(2mc/2).

Orr Dunkelman Hash Functions — Much Ado about Something 23/ 69



Introduction MD New Results I New Results II Future

The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .

◮ The same is true for finding a preimage (because you can
use it to find a second preimage).

To conclude, if f is collision resistant (i.e., it takes O(2mc/2)
invocations to find a collision), then Hf is collision resistant
and (second) preimage resistant with security level of
O(2mc/2). But we want better security guarantees, (of
O(2mc )) for (second) preimage!
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Second Preimage Attack on Merkle-Damg̊ard

◮ If a fix-point can be easily found, a second preimage
attack on a 2l -block message takes —
min{O(2mc−l), O(2mc/2)} [D99]

◮ Find O(2mc/2) fix-points denoted by
A = (h, m).

◮ Select O(2mc/2) single blocks and compute
B = (CMD(IV , m̃), m̃).

◮ Find a collision between A and B .

◮ Voilà — an expandable message m̃||mt for
all t lead to the same chaining value h.

E

hi+1

hi

mi
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Second Preimage Attack on Merkle-Damg̊ard

◮ If a fix-point can be easily found, a second preimage
attack on a 2l -block message takes —
min{O(2mc−l), O(2mc/2)} [D99]

◮ Find O(2mc/2) fix-points denoted by
A = (h, m).

◮ Select O(2mc/2) single blocks and compute
B = (CMD(IV , m̃), m̃).

◮ Find a collision between A and B .

◮ Voilà — an expandable message m̃||mt for
all t lead to the same chaining value h.

E

0
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Second Preimage Attack on Merkle-Damg̊ard

◮ If a fix-point can be easily found, a second preimage
attack on a 2l -block message takes —
min{O(2mc−l), O(2mc/2)} [D99]

◮ Find O(2mc/2) fix-points denoted by
A = (h, m).

◮ Select O(2mc/2) single blocks and compute
B = (CMD(IV , m̃), m̃).

◮ Find a collision between A and B .

◮ Voilà — an expandable message m̃||mt for
all t lead to the same chaining value h.

E

0

mi

Pick at
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Second Preimage Attack on Merkle-Damg̊ard

◮ If a fix-point can be easily found, a second preimage
attack on a 2l -block message takes —
min{O(2mc−l), O(2mc/2)} [D99]

◮ Find O(2mc/2) fix-points denoted by
A = (h, m).

◮ Select O(2mc/2) single blocks and compute
B = (CMD(IV , m̃), m̃).
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Second Preimage Attack on Merkle-Damg̊ard

◮ If a fix-point can be easily found, a second preimage
attack on a 2l -block message takes —
min{O(2mc−l), O(2mc/2)} [D99]

◮ Find O(2mc/2) fix-points denoted by
A = (h, m).

◮ Select O(2mc/2) single blocks and compute
B = (CMD(IV , m̃), m̃).

◮ Find a collision between A and B .

◮ Voilà — an expandable message m̃||mt for
all t lead to the same chaining value h.

E

0

mi

Pick at
Random

hi

hi+1 = hi
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Second Preimage Attack on Merkle-Damg̊ard

(cont.)

◮ If a fix-point can be easily found, a second preimage
attack on a 2l -block message takes —
min{O(2mc−l), O(2mc/2)} [D99]

◮ Take the message M .

◮ Starting from h, try to find a message block
x s.t., f (h, x) = hi , for one of the chaining
values of M .

◮ If succeeded, pad the message to the right
length and obtain a second preimage.

Emi

hi

hi+1 = hi
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Multi-collision Attacks on Iterative Hashing

◮ Finding 2t collisions in iterative hash function with
chaining value length mc , takes O(t · 2mc/2) [J04]
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Multi-collision Attacks on Iterative Hashing

◮ Finding 2t collisions in iterative hash function with
chaining value length mc , takes O(t · 2mc/2) [J04]

h0 h1 h2 h3 h4

m2
1

m1
1

m2
2

m1
2

m2
3

m1
3

m2
4

m1
4

In an ideal hash function the time complexity should be

O(2
2t−1

2t
·mc ).
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Another Way to Generate Expandable Messages

◮ In [KS05] the expandable message is constructed as a
multi-collision. In the first block between a message of
one block and a message of two blocks, then between one
block and three blocks, one and five, etc.

h0 h1 h2 h3 h4

m′
1||m

′
2

m1

m′
3||m

′
4||m

′
5

m2

m′
6|| . . . ||m

′
10

m3

m′
11|| . . . ||m

′
19

m4
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Expandable Message→ a Second Preimage Attack

IV h1 h2 h3 hi hL−1 hL
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Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers lengths from
l to 2l + l − 1, whose output chaining value is h.

IV h1 h2 h3 hi hL−1 hL

IV h
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Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers lengths from
l to 2l + l − 1, whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

IV h1 h2 h3 hi hL−1 hL

IV h

x?
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◮ Generate an expandable message that covers lengths from
l to 2l + l − 1, whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

◮ Once the “connection” step succeeds, fix the length using
the precomputed expandable message.
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IV h
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l to 2l + l − 1, whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

◮ Once the “connection” step succeeds, fix the length using
the precomputed expandable message.
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Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers lengths from
l to 2l + l − 1, whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

◮ Once the “connection” step succeeds, fix the length using
the precomputed expandable message.

◮ Time complexity: offline O(l · 2mc/2 + 2l). Online
O(2mc−l).

IV h1 h2 h3 hi hL−1 hL

IV h

x

message of length i − 1
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The Herding Attack — Targeted Preimage Attack

◮ Presented in [KK06] – the attacker fixes hT , and given a
challenge P, generates a message m = P||S , such that
h(m) = hT in time O(2mc−t + 2(mc+t)/2).

Precomputation — generation of a diamond structure.

h2t

hi

h1

h2

h3

h4

h⋄

mj

m3

m4

m3

m2

m1

Orr Dunkelman Hash Functions — Much Ado about Something 30/ 69



Introduction MD New Results I New Results II Future Fix Expandable Herding

The Herding Attack — Targeted Preimage Attack

◮ The attacker tries 2mc−t possible x ’s until H(P||x) is one
of the precomputed hi ’s in the diamond structure.

◮ Then, by concatenating the path in the diamond
structure to P||x it is possible to find a preimage of h⋄.

P

h2t

hi

h1

h2

h3

h4

h⋄
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Second Preimage Attack Based on Herding

◮ Using the herding attack to allow short “patches” to
messages O(2mc−t + 2(mc+t)/2 + 2mc−l) [A+08].

IV h1 h2 h3 hi hL−1 hL
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Second Preimage Attack Based on Herding

◮ Using the herding attack to allow short “patches” to
messages O(2mc−t + 2(mc+t)/2 + 2mc−l) [A+08].

◮ Generate a diamond structure.
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Second Preimage Attack Based on Herding

◮ Using the herding attack to allow short “patches” to
messages O(2mc−t + 2(mc+t)/2 + 2mc−l) [A+08].

◮ Generate a diamond structure.
◮ Try random mlink2, until f (h⋄, mlink2) = hi , for some hi

obtained during the computation of h(M).
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◮ Try random mlink2, until f (h⋄, mlink2) = hi , for some hi

obtained during the computation of h(M).
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Second Preimage Attack Based on Herding

◮ Using the herding attack to allow short “patches” to
messages O(2mc−t + 2(mc+t)/2 + 2mc−l) [A+08].

◮ Generate a diamond structure.
◮ Try random mlink2, until f (h⋄, mlink2) = hi , for some hi

obtained during the computation of h(M).
◮ So starting from hi−t−2, try random mlink1 until one of

the entry points of the diamond structure are found.
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◮ Try random mlink2, until f (h⋄, mlink2) = hi , for some hi

obtained during the computation of h(M).
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The MD/SHA-Family

The MD/SHA family is composed of many hash functions
with similar design criteria:

◮ Davies-Meyer transformation of a block cipher into a
compression function.

◮ Merkle-Damg̊ard hash function.

◮ Simple round functions (with little nonlinearity).

◮ The nonlinearity is “introduced” bit-by-bit (AND, MAJ
operations) and using addition modulo 232.

◮ The message expansion (key schedule) is linear (either
repetition, or through an LFSR).

◮ Very software-friendly (not so bad on hardware as well).

◮ Message block: 512-bit; Digest size: 128-bit (MD4/5),
160-bit (SHA).
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History of the World (part I)

◮ MD4 introduced in 1990 by Rivest. Collision attack —
Dobbertin (1996) (attack on the last two steps — den
Boer & Bosselaers, 1991).

◮ MD5 introduced in 1991 by Rivest. Some
non-randomness problems by Berson (1992) and a
free-start collision by den Boer & Bosselaers (1993).

◮ SHA-0 introduced in 1995 by NIST. Larger digest size,
message is expanded using an LFSR. A collision attack by
Chabaud & Joux (1998).

◮ SHA-1 followed immediately after SHA-0.

◮ And the land had rest eight years . . .
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History of the World (part II)

◮ Crypto 2004: Near collisions of SHA0 (Biham & Chen).

◮ Rump session: Wang presents collision attacks against MD4.

◮ Eurocrypt 2005: Wang et al. publish the MD4 paper, finding
collisions in MD4, RIPEMD, MD5. Biham et al. find collisions in
SHA-0, reduced round SHA-1.

◮ Crypto 2005: Wang, Yu, Yin: Better SHA-0 collisions, SHA-1
collision attack.

◮ NIST 2005: Wang announces better collision attack on SHA-1.

◮ Asiacrypt 2006: De Canniére & Rechberger, improved collision
attack on SHA-1.

◮ August 2007: Graz people start their SHA-1 BOINC project.

◮ FSE 2008: Preimage attack on MD4 (Leurent).

◮ Crypto 2008: Preimage attacks on reduced SHA-0 and SHA-1 (De
Canniére & Rechberger).
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History of the World (part III)

◮ MD4/MD5 collisions start to be applied to
NMAC/HMAC.

◮ In the related-key model NMAC-MD4/-MD5 (Contini &
Yin 2006, Fouque, Leurent & Nguyen 2007, . . . ) can be
attacked.

◮ HMAC-MD4 is also broken (Wang, Ohta, & Kunihiro
2008).

◮ Things start to get complicated. . .
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History of the World (part IV)

◮ Random collisions can be source of trouble for some file
formats (Daum & Lucks 2005, later extended by
Gebhardt, Illies, & Schindler 2005).

◮ Colliding X.509 certificates with same name, different
keys (Lenstra & de-Weger 2005).

◮ Technique was improved to generate colliding X.509
certificates for different names (Stevens, Lenstra &
de-Weger 2007).
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4 And then Came Prof. Wang
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So What’s Next?

Open issues:

◮ Mode of iteration that preserves second preimage
resistance.

◮ Better compression functions.

◮ Information theoretic approach?

◮ Proofs! We want proofs!

◮ The next generation hash function — SHA-3.
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Randomized Hashing

◮ Introduced by Halevi & Krawczyk to solve the issue of a
random collision collapsing the entire security of the hash
function.

◮ The main idea: Instead of hashing m, one chooses a
random value r , and hashes h(m ⊕ r ||r || . . . ||r) or
hr (m ⊕ r ||r || . . . ||r).

◮ The security is enhanced Target Collision Resistant
(eTCR) which defines the advantage in the game:

1 The adversary commits to a message M.
2 The adversary is given a key k (chosen at random).
3 The adversary has to find M ′, k ′ s.t., hk(M) = hk′(M ′).
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Dithering Sequences

◮ Suggested by Rivest as a solution to expandable message
issues.

◮ The compression function is called every time with a
dither sequence.

◮ One proposal uses a dither sequence over 4 characters
which has very nice properties.

◮ Practical proposal: take the nice sequence, and embed it
into a more efficient sequence. Use 16-bit dither
sequence:

◮ First bit is 0, but for the last block (1).
◮ Next two bits are encoding of the “nice sequence”.
◮ Next thirteen bits are a counter. Once the counter

overflows, change the character in the “nice sequence”.
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Dithering Sequences (cont.)

◮ While the security of the dithered hash is indeed better
than of plain Merkle-Damg̊ard it is not optimal.

◮ The second preimage attack based on herding is still
applicable (even though there is an “added” security of
215).
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Enveloped Merkle-Damg̊ard

◮ The Enveloped Merkle-Damg̊ard [BR06] is a
transformation of a “good” compression function into a
hash function which preserves the following three
properties:

1 Collision resistance.
2 Pseudo-random oracle behavior.
3 Pseudo-random function behavior.

◮ The mode is similar to Merkle-Damg̊ard, up to the last
block, where in the last block:

1 The chaining value is fixed to a second IV value.
2 The previous chaining value (the output of the one

before last compression function call) is concatenated to
the message block (the last message block is shorter
than the previous ones).
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ROX

◮ The ROX transformation [A+07], is a way to preserve the
compression function’s properties (Coll, (a/e)Sec,
(a/e)Pre) in the hash function.

◮ The proposal follows Shoup’s hash (a UOWHF [S01]):
◮ Before each compression function call, the chaining

value is XORed with a masks µν(i) when hashing the i ’th

block, where ν(i) = maxj{2
j |i}.

◮ The padding is derived using a random oracle query.
◮ The masks are also derived using a random oracle

queries.
◮ The random oracle queries are “keyed” by a prefix of the

message.
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Widepipe [L05]

◮ We know to prove that the (second) preimage resistance
is as secure as collision resistance.

◮ Internal collisions cause many problems.

◮ Solution: increase the chaining value.

◮ For example, with chaining value of length twice the
digest size.

◮ If the compression function is good (as well as the last
block which compresses the double chaining value), then
we have a secure hash function.
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Sponges

◮ A theoretical framework for constructions like
PANAMA.

◮ The internal state is relatively large (e.g., 59
l -bit words in PANAMA’s successor,
RadioGATÚN).

IV

⊕m1

f

⊕m2

f

⊕m3

f

⊕ml

f

x
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Sponges

◮ A theoretical framework for constructions like
PANAMA.

◮ The internal state is relatively large (e.g., 59
l -bit words in PANAMA’s successor,
RadioGATÚN).

◮ During message processing, each round, a
small message block is processed, and the
new internal state is computed.
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Sponges

◮ A theoretical framework for constructions like
PANAMA.

◮ The internal state is relatively large (e.g., 59
l -bit words in PANAMA’s successor,
RadioGATÚN).

◮ After all the message blocks affect the
internal state, some blank rounds are run
(i.e., processing an all-zero block).
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Sponges

◮ A theoretical framework for constructions like
PANAMA.

◮ The internal state is relatively large (e.g., 59
l -bit words in PANAMA’s successor,
RadioGATÚN).

◮ For output, the sponge is squeezed, each
round some of its internal state leaks as an
output.

y
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Sponges (cont.)

◮ If the update function is random (permutation/function)
than the sponge is indifferentable from a random oracle
[B+08].
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Sponges (cont.)

◮ If the update function is random (permutation/function)
than the sponge is indifferentable from a random oracle
[B+08].

◮ This requires a “strong” f which diffuses and confuses
the entire (large) internal state.

◮ Such functions are very resource consuming, and the
actual designs have a relatively “light” f .

◮ PANAMA [DC98] was broken using attacks which uses
the slow “diffusion” & “confusion” [R01,DvA07].

◮ Grindhal [KRT07], was broken using the quick diffusion
and the weak confusion [P07].

◮ Only “surviving” candidate — RadioGATÚN (and to
some extent Grindhal 2).

Orr Dunkelman Hash Functions — Much Ado about Something 48/ 69



Introduction MD New Results I New Results II Future Alternatives Design Permutation Proofs SHA3

HAsh Iterative FrAmework (HAIFA)

◮ Major features:
◮ Supports salts (defines families of hash functions).
◮ Supports variable output size.
◮ Offers as good security properties as can be.
◮ Strong backward compatibility.
◮ All suggested modes can be realized as HAIFA.

(This a joint work with Eli Biham)
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The HAIFA Compression Function

◮ Accepts as inputs:
◮ A chaining value (of size mc)
◮ A message block (of size n)
◮ A bit counter (of size b)
◮ A salt (of size s)

f : {0, 1}mc × {0, 1}n × {0, 1}b × {0, 1}s → {0, 1}mc .
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The HAIFA Initialization

◮ Let m be the target digest size.

◮ Let IV be a general initial value.

◮ IVm = C (IV , m, 0, 0).
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The HAIFA Computation

◮ Take M , the message, and pad it:
◮ Pad a single bit of 1.
◮ Pad as many 0 bits as needed such that the length of

the padded message (with the 1 bit and the 0’s) is
congruent modulo n to (n − (t + r)).

◮ Pad the message length encoded in t bits.
◮ Pad the digest size encoded in r bits.

◮ Set h0 = IVm

◮ For i = 1, 2, . . . , l compute hi = C (hi−1, Mi , #bits, salt).

◮ Truncate hl to m bits.
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Permutation-Based Hashing

◮ Standard compression functions are a transformation of a
block cipher into a hash function (following the PGV
“approved” list).

◮ In all of them, there is a need to re-key the block cipher.

◮ But block ciphers are efficient when the key is fixed.
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Permutation-Based Hashing

◮ A compression function from mn bits to rn bits using k
calls to permutations of n-bit to n-bit, has a maximal
information theoretic security of

2n[1−(m−0.5r)/k] / 2n[1−(m−r)/k]

queries for collision resistance/preimage resistance
[BR08].

◮ Note that this results discuss the number of queries to
the permutation.

◮ This means that if the compression function uses 8-bit
S-boxes and compresses 768 bits to 256 bits, it has
security of 28(1−80/k) or 28(1−64/k) queries.

◮ Finding the actual collisions/preimages are very time
consuming.
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Proving the Security of the Compression Function

◮ Very Smooth Hash [CLS06] is a provable secure hash
function.
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Proving the Security of the Compression Function

◮ Very Smooth Hash [CLS06] is a provable secure hash
function.

◮ Provable collision resistance that is.
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Proving the Security of the Compression Function

◮ Very Smooth Hash [CLS06] is a provable secure hash
function.

◮ Provable collision resistance that is.
◮ Finding a collision means a factorization of a large

number (following prior works [D87]).
◮ The construction:

1 Let n be a large number (whose factorization is
unknown).

2 Let pi be the ith prime number, and let k be the
maximal for which

∑k
i=1 pi < n.

3 To compress a message block (of length k) xi , and a
chaining value hi , compute

hi+1 = h2
i ×

k
∏

j=1

p
xi,i

j
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Some More on VHS

◮ VHS is very slow (even though it is way faster than
previous similar constructions) — about 8.8 Mbit/sec on
1 GHz machine (about 910 cpb).
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Some More on VHS

◮ VHS is very slow (even though it is way faster than
previous similar constructions) — about 8.8 Mbit/sec on
1 GHz machine (about 910 cpb).

◮ Also VHS is not a hash function.

◮ Knowing the factorization of n enables preimage attacks.

◮ And it has multiplicative problems. Let x , y , z be three
strings such that z = 0, and x ∧ y = z , then

H(z)H(x ∨ y) = H(x)H(y) mod n

◮ And when the output is truncated, collisions are easier to
find [S06].
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Other Provable Compression Functions

◮ Compression function proposals were also suggested based
on syndrome-decoding of a random code ([AFS05]).

◮ Due to speed, it was suggested in [FGS07] to change the
matrix of the code to a quasi-cyclic, leading a more
efficient hashing.
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efficient hashing.

◮ The change led to an attack ([FL08]).
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Other Provable Compression Functions

◮ Compression function proposals were also suggested based
on syndrome-decoding of a random code ([AFS05]).

◮ Due to speed, it was suggested in [FGS07] to change the
matrix of the code to a quasi-cyclic, leading a more
efficient hashing.

◮ The change led to an attack ([FL08]).

◮ Lattices were also suggested as a building block [GGH96].

◮ Due to attack algorithms on lattices, it requires large
parameters.

◮ In LASH, the construction was tweaked a bit to allow
much faster implementations [B+06].
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Other Provable Compression Functions

◮ Compression function proposals were also suggested based
on syndrome-decoding of a random code ([AFS05]).

◮ Due to speed, it was suggested in [FGS07] to change the
matrix of the code to a quasi-cyclic, leading a more
efficient hashing.

◮ The change led to an attack ([FL08]).

◮ Lattices were also suggested as a building block [GGH96].

◮ Due to attack algorithms on lattices, it requires large
parameters.

◮ In LASH, the construction was tweaked a bit to allow
much faster implementations [B+06].

◮ Of course, this led to attacks (collision and preimage)
[S+08].
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Other Provable Compression Functions

◮ An interesting approach is the DAKOTA construction
[DKT08] also inspired by [D87].

◮ Let f : {0, 1}m → QR(n), where n is a number whose
factorization is unknown.

◮ To compress the input (mi , hi):

hi+1 = f (mi) · h
2
i ,

where h0 ∈ QR(n).
◮ This is secure as long as finding (b, y), (b′, y ′) s.t.

f (b)f −1(b′) = y ′y−1 mod n is hard.
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Other Provable Compression Functions

◮ An interesting approach is the DAKOTA construction
[DKT08] also inspired by [D87].

◮ Let f : {0, 1}m → QR(n), where n is a number whose
factorization is unknown.

◮ To compress the input (mi , hi):

hi+1 = f (mi) · h
2
i ,

where h0 ∈ QR(n).
◮ This is secure as long as finding (b, y), (b′, y ′) s.t.

f (b)f −1(b′) = y ′y−1 mod n is hard.
◮ It is also possible to use a random f (·):

hi+1 = (f (mi) · hi)
2.
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Other Provable Compression Functions

◮ An interesting approach is the DAKOTA construction
[DKT08] also inspired by [D87].

◮ Let f : {0, 1}m → QR(n), where n is a number whose
factorization is unknown.

◮ To compress the input (mi , hi):

hi+1 = f (mi) · h
2
i ,

where h0 ∈ QR(n).
◮ This is secure as long as finding (b, y), (b′, y ′) s.t.

f (b)f −1(b′) = y ′y−1 mod n is hard.
◮ It is also possible to use a random f (·):

hi+1 = (f (mi) · hi)
2.

◮ If the assumption holds, then the security proof holds.
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Collision Resistance of Merkle-Damg̊ard

◮ Assume that the compression function is optimal.

◮ Let assume that there is an adversary A which can find
collisions in MD f (·) efficiently, and we transform it into
A′ which finds collisions in f (·).

◮ Examine the collision produced by A. If the messages are
not of the same length, then, necessarily there is a pair of
inputs (h, m) 6= (h′, m′) s.t. f (h, m) = f (h′, m′).
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◮ Let assume that there is an adversary A which can find
collisions in MD f (·) efficiently, and we transform it into
A′ which finds collisions in f (·).

◮ Examine the collision produced by A. If the messages are
not of the same length, then, necessarily there is a pair of
inputs (h, m) 6= (h′, m′) s.t. f (h, m) = f (h′, m′).
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Collision Resistance of Merkle-Damg̊ard

◮ Assume that the compression function is optimal.

◮ Let assume that there is an adversary A which can find
collisions in MD f (·) efficiently, and we transform it into
A′ which finds collisions in f (·).

◮ If the messages are of the same length, start from the last
block and go backwards, until you find the block which
differs. And voilá — a collision in f (·).
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collisions in MD f (·) efficiently, and we transform it into
A′ which finds collisions in f (·).

◮ If the messages are of the same length, start from the last
block and go backwards, until you find the block which
differs. And voilá — a collision in f (·).
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◮ Assume that the compression function is optimal.

◮ Let assume that there is an adversary A which can find
collisions in MD f (·) efficiently, and we transform it into
A′ which finds collisions in f (·).

◮ If the messages are of the same length, start from the last
block and go backwards, until you find the block which
differs. And voilá — a collision in f (·).
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Second Preimage Resistance of Merkle-Damg̊ard

◮ Let A be a second preimage adversary for MD f (·).

◮ A accepts M and returns M ′ s.t. MD f (M) = MD f (M ′).

◮ There is no known method to transform it into a second
preimage adversary for f (·). . . .
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The eSec Game

◮ An adversary AeSec
hf (·)

picks a message M , gets a key K , and

outputs M ′ s.t., hK (M) = hK (M ′).

◮ Our adversary AeSec
f (·) has to pick a message block mi as

input to f (·).

◮ Hence, it is required to embed the short challenge (the
key AeSec

f (·) gets) in the long challenge.

◮ The best known way to do so (when it is known), is to
guess where the AeSec

hf (·)
is going to generate a second

preimage.
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The eSec Game

◮ An adversary AeSec
hf (·)

picks a message M , gets a key K , and

outputs M ′ s.t., hK (M) = hK (M ′).

◮ Our adversary AeSec
f (·) has to pick a message block mi as

input to f (·).

◮ Hence, it is required to embed the short challenge (the
key AeSec

f (·) gets) in the long challenge.

◮ The best known way to do so (when it is known), is to
guess where the AeSec

hf (·)
is going to generate a second

preimage.

◮ This means, that if the second preimage resistance of f (·)
is at most 2n, the (provable) second preimage resistance
of hf (·) is at most 2n/l for an l -block messages.
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Achieving the Best

◮ To overcome the lose of 1/l , it is needed to be able to
embed the query in several places.

◮ But the adversary AeSec
hf (·)

can easily notice that we are
embedding the same query in several places and refuse
answering.

◮ So for the proof to work the adversary AeSec
f (·) has to

embed its query in several places.

◮ Very very tricky . . .
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Achieving the Best (cont.)

◮ The problem is in the proof technique.

◮ That means that you can still have second preimage
resistance of 2n, even though you will not be able to
prove it.
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Achieving the Best (cont.)

◮ The problem is in the proof technique.

◮ That means that you can still have second preimage
resistance of 2n, even though you will not be able to
prove it.

◮ The second preimage attacks work because each
invocation of the compression function is the “same”.
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Achieving the Best (cont.)

◮ The problem is in the proof technique.

◮ That means that you can still have second preimage
resistance of 2n, even though you will not be able to
prove it.

◮ The second preimage attacks work because each
invocation of the compression function is the “same”.

◮ In HAIFA, for example, there is very strong reasons to
believe that it has second preimage resistance of 2n.
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SHA-3 — The Next (Next) Generation

◮ A response of NIST to all the advances in the
cryptanalysis of SHA-1.

◮ The Advanced Hash Standard (AHS) competition is all
about finding a secure replacement for the SHA-2 family.
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SHA-3 — The Next (Next) Generation

◮ A response of NIST to all the advances in the
cryptanalysis of SHA-1.

◮ The Advanced Hash Standard (AHS) competition is all
about finding a secure replacement for the SHA-2 family.

◮ But SHA-2 family has not been broken (yet)!

◮ SHA-2 family has some security issues due to the
Merkle-Damg̊ard construction (second preimage attacks).

◮ SHA-256/-224 is much slower than SHA-1 (29 cpb vs. 10
cpb on a 32-bit machine).

Orr Dunkelman Hash Functions — Much Ado about Something 64/ 69



Introduction MD New Results I New Results II Future Alternatives Design Permutation Proofs SHA3

SHA-3 — The Next (Next) Generation (cont.)

◮ NIST expects many candidates to be submitted.
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SHA-3 — The Next (Next) Generation (cont.)

◮ NIST expects many candidates to be submitted.

◮ So does everybody else.
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SHA-3 — The Next (Next) Generation (cont.)

◮ NIST expects many candidates to be submitted.

◮ So does everybody else.

◮ Open issues:

1 Mode of iteration (Merkle-Damg̊ard vs. HAIFA
vs. widepipe vs. tree hashes vs. provable modes vs. weird
constructions).

2 Good security.
3 Good performance:

◮ On a 32-bit platform? 64-bit platform? 8-bit machines?
◮ ASIC/FPGA? Other hardware models?
◮ Single core? Multiple cores? Multiple CPUs?

4 Side channel resistance?
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SHA-3 — My Guesses

Things which will label this entire thing as a waste of
resources:

◮ Selecting something which offers less security than
“optimal”.

◮ Selecting something much slower than SHA.

◮ If performance requirements much larger than SHA.
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SHA-3 — My Guesses (Mode of Iteration)

◮ Merkle-Damg̊ard— Not the best security achievable.

◮ Sponges — too new, not such a good track-record.

◮ Widepipe or HAIFA — probably the winning mode.

◮ Other provable modes — not so likely.

Orr Dunkelman Hash Functions — Much Ado about Something 67/ 69



Introduction MD New Results I New Results II Future Alternatives Design Permutation Proofs SHA3

SHA-3 — My Guesses (Compression Functions)

◮ Performance on 32-bit machine up to 35–40 cpb (33%
slowdown with respect to SHA256).

◮ Performance on 64-bit machine up to 25–30 cpb for
256-bit digests. Up to 20 cpb for 512-bit digests.

◮ Implementable on 8-bit platforms.

◮ ASIC speeds that can reach 5 Gbps.

◮ Possible to implement with “restricted” memory.

◮ RFID will not play any role.

◮ Good differential and linear properties.

◮ Known and well-understood components to be preferred
over new and/or not fully understood (e.g., XOR
vs. addition).
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Questions?

Thank you for your attention!

and Smakelijk!
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