
Surf127eps: A key-exchange cryptosystem based on a

Kummer surface

P. Gaudry, T. Houtmann and E. Thomé

Version 1. December 2006

The Surf127eps cryptosystem is a key-exchange cryptosystem based on the Kummer surface of
a genus 2 hyperelliptic curve over the finite field with p = 2127−735 elements. The implementation
follows the formulae described in [1].

1 Parameters of the Kummer surface

The Kummer surface that is used corresponds to a genus 2 curve that has complex multiplication
by

K = Q

(

i

√

5 +
√

53

)

.

This field has class number 4 and is non-Galois. The CM-ideal has degree 8 and is irreducible over
Q. Consider the prime integer

p = 2127 − 735.

This prime splits completely in K and the corresponding factors are good Weil numbers. Further-
more the Igusa invariants of one of the corresponding curves have quotient of squares of Theta
constants which are Fp-rational. With the terminology of [1], one can take (projectively):

a = 1
b = 104737609498996807573042644460938049128
c = 149790188288476750369734729103725046598
d = 129048219867477581895670028479253045173 .

This data verifies the Genericity Conditions of [1]; also the underlying curve is known, so that
there is no need to check the Rationality Conditions.

The CM theory provides the group orders for the Jacobians of the curve and its twists:

N = 16 × 1809251394333065553537167681402254284155645350006293173560781593047272845093

Ñ = 256 × 2551× 62039× 167974189× 36109087046045143171
× 117799819428280417184102738315899959101 .

The following point P on the Kummer surface has order N/8 and can therefore be used as a
base point in a Diffie-Hellman key exchange.

P = (1, 1, 7, 90405191680719851590637208281830435685).

Security. We consider here the elementary security of this cryptosystem, without taking into
account the potential weaknesses of the implementation (there are some in this version) or in the
inclusion in a larger protocol (authentication is not done, for instance). Let us then consider the
best known algorithm for solving one discrete logarithm in the N -order Jacobian corresponding
to this Kummer surface, namely Pollard’s Rho algorithm or distributed variants of it. This takes
about the square root of the largest prime factor of the group order:

√

N/16 ≈ 2125. This is well
beyond any feasible computation.

1



2 Some implementation details

2.1 Finite field arithmetic

Elements of the finite field are represented as a table of unsigned long of fixed length (2 or 4
words, depending on 32- or 64- architecture). In the current implementation, after each operation
the returned element is normalized to an integer between 0 and p−1. This is probably not optimal.
The reduction modulo p takes advantage of the particular form of p.

2.2 Encoding of keys

A secret key is an integer between 0 and 2256 − 1. We impose it to be a multiple of 2 in order to
avoid subgroups attacks. This secret key is stored in big-endian form in 32 bytes.

The public key and the shared secret are points of the Kummer surface. Since these are
projective coordinates, we can (or we must in the case of the share secret) make them affine by,
for instance, putting the first coordinate to 1. There are 3 elements left to store, that all fill in
128 bits (actually 127), therefore it takes 48 bytes to store a public key or a shared secret.

3 Future work

Here is our ”to do”list for the next version, that should much closer to a decent production software.
This should not deteriorate the speed of the algorithm, except maybe for the key validation part.

• Faster finite field arithmetic.

As said above, the current representation of field element is probably too strict to allow
maximal performance. We might change our choice of the base field in order to have nails

(GMP language).

• Key validation.

It is necessary to check that the public key of the other party is valid. One hope would be
to avoid this completely by using an appropriate surface that corresponds to secure curve
and twist. However this is not enough, since there is also a need to check that the point is
indeed on the Kummer surface.

• Study and avoid degenerate cases.

The current version does not take into account the potential exceptional cases that would
create a non-point with all-zero coordinates. There is some theory to do here before fixing
the implementation.

• Study the point compression.

There is some redundency in the 48 bytes used for representing a Kummer point. We can put
all the information in 32 bytes, but then it is required to compute the roots of a polynomial
of degree 4. We might implement that in the next version.

• Implement Montgomery’s PRAC algorithm.

The Lucas chain we use is the classical double and add which is not optimal. If we assume
that resistance to side-channel attack is not an issue, we can use the PRAC algorithm to
save some work.

• Use a CM curve with a larger class number.

Low class number CM curve have a bad reputation (but there is still no known attack). For
this first version we used a small class number, but in the next version a larger class number
will be used (say, at least one hundred).

2



• If possible, use a random curve, obtained by point counting.

Point counting on this size of genus 2 curve has not yet been done. It is not clear that this
will be feasible in a near future without algorithmic improvements.

References

[1] P. Gaudry. Fast genus 2 arithmetic based on theta functions. Cryptology ePrint Archive:
Report 2005/314, 2005.

3


