

Optimal Irreducible Polynomials
for GF(2m) arithmetic

Michael Scott
School of Computing
Dublin City University

GF(2m) polynomial representation

 A polynomial with coefficients either
0 or 1 (m is a small prime)

 Stored as an array of bits, of length
m, packed into computer words

 Addition (and subtraction) – easy –
XOR. No reduction required as bit
length does not increase.

http://www.dcu.ie/

GF(2m) arithmetic 1

 Squaring, easy, simply insert 0
between coefficients.
 Example 110101 → 10100010001

 Multiplication – artificially hard as
instruction sets do not support “binary
polynomial” multiplication, or
“multiplication without carries” – which is
actually simpler in hardware than integer
multiplication! Really annoying!

http://www.dcu.ie/

GF(2m) arithmetic 2

 So we use Comb or Karatsuba
methods…

 Squaring or multiplication results in
a polynomial with 2m-1 coefficients.

 This must be reduced with respect
to an irreducible polynomial, to
yield a field element of m bits.

 For example for m=17, x17+x5+1

http://www.dcu.ie/

GF(2m) arithmetic 3

 This trinomial has no factors
(irreducible)

 Reduction can be performed using
shifts and XORs

 x17+x5+1 = 100000000000100001
 Example – reduce
 10100101010101101010101

http://www.dcu.ie/

GF(2m) arithmetic 4

10100101010101101010101
100000000000100001 ⊕
00100101010110000110101 ←
100101010110000110101
100000000000100001 ⊕
000101010110100111101 ←
101010110100111101
100000000000100001 ⊕
001010110100011100 ←
1010110100011100 → result!

http://www.dcu.ie/

Reduction in software - 1

 Consider the standard pentanomial
x163+x7+x6+x3+1

 Assume value to be reduced is
represented as 11 32-bit words g[.]

 To be reduced to 6 word result
 In software the unrolled reduction

algorithm looks like this

http://www.dcu.ie/

Reduction in software - 2

 g10 ← g[10], g9 ← g[9], g8 ← g[8], g7 ← g[7], g6 ← g[6]
 g[10] ← g[9] ← g[8] ← g[7] ← g[6] ← 0
 g[5] ← g[5]⊕(g10«4)⊕(g10«3)⊕g10⊕(g9»28)⊕(g9»29)
 g[4] ← g[4]⊕(g10«29)⊕(g9»3)⊕(g9«4)⊕(g9«3)⊕g9⊕(g8»28)⊕(g8»29)
 g[3] ← g[3]⊕(g9«29)⊕(g8»3)⊕(g8«4)⊕(g8«3)⊕g8⊕(g7»28)⊕(g7»29)
 g[2] ← g[2]⊕(g8«29)⊕(g7»3) ⊕(g7«4)⊕(g7«3)⊕g7⊕(g6»28)⊕(g6»29)
 g[1] ← g[1]⊕(g7«29)⊕(g6»3) ⊕(g6«4)⊕(g6«3)⊕g6
 g[0] ← g[0]⊕(g6«29)
 t ← g[5]»3, g[0] ← g[0]⊕t, t ← (t«3)
 g[1] ← g[1]⊕(t»28)⊕(t»29)
 g[0] ← g[0]⊕t⊕(t«4)⊕(t«3)
 g[5] ← g[5]⊕t

 38 XORs, 33 shifts

http://www.dcu.ie/

Reduction in software - 3

 The shift values are
 S=163 mod 32 and 32-S = (3,29)
 S=163-7 mod 32 and 32-S = (28,4)
 S=163-6 mod 32 and 32-S = (29,3)
 S=163-3 mod 32 and 32-S = (0,32) (!!)
 A shift by 32 results in a zero, and a shift

by 0 is free. What if the irreducible
polynomial was chosen to make this
happen more often? Saves 1 XOR and 2
shifts per line…

http://www.dcu.ie/

A better polynomial

 Now try x163+x99+x97+x3+1
 Note that this time the shifts are by

(3,29), (0,32), (2,30) and (0,32)
 Should result in shorter, faster

reduction code.
 It does…

http://www.dcu.ie/

A better polynomial

 g10 ← g[10], g9 ← g[9], g8 ← g[8], g7 ← g[7], g6 ← g[6]
 g[10] ← g[9] ← g[8] ← g[7] ← g[6] ← 0
 g8 ← g8⊕g10⊕(g10»2), g7 ← g7⊕(g10«30)⊕g9⊕(g9»2)
 g6 ← g6⊕(g9«30)⊕g8⊕(g8»2)
 g[5] ← g[5]⊕g10⊕(g8«30)⊕g7⊕(g7»2)
 g[4] ← g[4]⊕(g10«29)⊕(g9»3)⊕g9⊕(g7«30)⊕g6⊕(g6»2)
 g[3] ← g[3]⊕(g9«29)⊕(g8»3)⊕g8⊕(g6«30)
 g[2] ← g[2]⊕(g8«29)⊕(g7»3)⊕g7
 g[1] ← g[1]⊕(g7«29)⊕(g6»3)⊕g6
 g[0] ← g[0]⊕(g6«29)
 t ← g[5]»3, g[0] ← g[0]⊕t, t ← (t«3)
 g[0] ← g[0]⊕t
 g[2] ← g[2]⊕(t«30)
 g[3] ← g[3]⊕t ⊕(t»2)
 g[5] ← g[5]⊕t

 35 XORs and 23 shifts

http://www.dcu.ie/

A better polynomial

 If the irreducible trinomial is of the
form xm+xa+1, and (m-a) is a
multiple of the word-length, then
it’s a lucky trinomial (LT).

 If the irreducible pentanomial is of
the form xm+xa+xb+xc+1, and (m-
a), (m-b), (m-c) are all multiples of
the word-length, then it’s a lucky
pentanomial (LP).

http://www.dcu.ie/

A better polynomial

 If only two out of three of (m-a),
(m-b) and (m-c) are multiples of
the wordlength, then it’s a fortunate
pentanomial (FP).

 LTs may not exist or very rare.
 LPs can be quite plentiful
 FPs are even more plentiful
 Clearly helps if a (and b and c for a

pentanomial) are all odd.

http://www.dcu.ie/

Square roots

 As it happens having, a (and b and
c) odd is already a good idea, as it
facilitates a much faster square
rooting algorithm (Fong et al.)

 Square roots are important for
point-halving algorithms, and for
the ηT pairing

http://www.dcu.ie/

Square roots

 Assume trinomial
 Let ζ =x(m+1)/2+x(a+1)/2

 Then √α = αeven + ζ.αodd
 Where αeven are the even indexed

elements of α collapsed into a half
sized bit array, and αodd are the odd
indexed elements of α also
collapsed into a half sized bit array.

http://www.dcu.ie/

Example

 In GF(217) find square root of
 01010110100011100
 αeven = 000110110
 αodd = 011100010
 ζ =x9+x3

 So the square root is..

http://www.dcu.ie/

Example

000000000000110110
011100010000000000 ⊕
000000011100010000 ⊕
=
011100001100100110

No reduction required!

http://www.dcu.ie/

Square roots

 In software it helps if (m+1)/2 and
(a+1)/2 are multiples of the word
length – again less shifts will be
needed.

 No reason not to insist on
trinomials/pentanomials with odd a
(b and c)

http://www.dcu.ie/

Some bad news..

 If a trinomial does not exist for the
given field, a lucky pentanomial
does not exist either (Buhler)

 If m=±1 mod 8 a trinomial might
be found, and so might a lucky
pentanomial

 If m= ± 3 mod 8, no trinomial, no
lucky pentanomial, but maybe a
fortunate pentanomial.

http://www.dcu.ie/

Pecking order..

 A lucky trinomial beats a lucky
pentanomial, beats an ordinary
trinomial, beats a fortunate
pentanomial.

 But for m= ± 3 mod 8 only hope is
a fortunate pentanomial 

 So pentanomial can be better than
a trinomial – Yes!

http://www.dcu.ie/

Pentanomial beats a trinomial?

 Consider GF(2233)
 Trinomial x233+x159+1
 Lucky pentanomial for 32-bit

processor x233+x201+x105+x9+1
 Trinomial requires 4 XORs and 4

shifts per iteration of the (rolled)
reduction algorithm

 Pentanomial requires 5 XORs and
only 2 shifts

http://www.dcu.ie/

Code for GF(2233) trinomial

 for (i=xl-1;i>=8;i--)
 {
 w=gx[i]; gx[i]=0;
 gx[i-2]^=(w>>10);
 gx[i-3]^=(w<<22);
 gx[i-7]^=(w>>9);
 gx[i-8]^=(w<<23);
 } /* XORs= 4 shifts= 4 */
 top=gx[7]>>9; gx[0]^=top; top<<=9;
 gx[4]^=(top<<22);
 gx[5]^=(top>>10);
 gx[7]^=top;

http://www.dcu.ie/

Code for GF(2233) pentanomial

 for (i=xl-1;i>=8;i--)
 {
 w=gx[i]; gx[i]=0;
 gx[i-1]^=w;
 gx[i-4]^=w;
 gx[i-7]^=(w>>9)^w;
 gx[i-8]^=(w<<23);
 } /* XORs= 5 shifts= 2 */
 top=gx[7]>>9; gx[0]^=top; top<<=9;
 gx[0]^=top;
 gx[3]^=top;
 gx[6]^=top;
 gx[7]^=top;

http://www.dcu.ie/

Pentanomial beats a trinomial?

 But wait.. On the ARM processor
shifts are free!

 EOR R1,R2,R3,LSL #7
 R1=R2⊕(R3«7)
 Very nice feature for GF(2m)

arithmetic!
 But not supported on most other

architectures!

http://www.dcu.ie/

Pentanomial beats a trinomial?

 In fact on smaller processors shifts may
be much more expensive than XOR.

 May only support 1-bit shifts and rotates,
so multi-bit shifts require multiple clock
cycles.

 On MIPS/Pentium a shift (of any length)
costs same as XOR

 So in many (most?) cases a lucky
pentanomial beats a trinomial.

http://www.dcu.ie/

Real-world architectures

 Texas Instruments msp430
 16-bit processor
 One bit shifts/rotates only
 Used in Wireless Sensor Networks
 Atmel Atmega-128
 8-bit processor
 One bit shifts/rotates only

http://www.dcu.ie/

What about m=±3 mod 8?

 Maybe try to find a lucky redundant
pentanomial (Brent & Zimmerman)?

 For m=163, x165+x69+x37+x5+1 has
163 degree factor.

 Are redundant polynomials a good
idea??

http://www.dcu.ie/

Results

 Using a simple cost model which
costs XORs and shifts appropriately
for a selection of architectures, we
search for the optimal polynomials,
for standard values of m.

 For different word length, often
different results (not surprising),
but also often there is agreement

http://www.dcu.ie/

Results

 In many cases a lucky pentanomial
is better than a trinomial

 For msp430 processor, pentanomial
is always superior.

 For Atmel 8-bit processor lucky
trinomials are possible.

http://www.dcu.ie/

Last words

 The current standard polynomials
should be scrapped! They are awful!

 Replacements should be square root
friendly, and close to optimal for a
wide range of architectures.

http://www.dcu.ie/

Optimal Irreducible Polynomials

Questions??

http://www.dcu.ie/

