a*x^2+y^2=1+d*x^2*y^2
Inverted coordinates [database entry] represent x y as X Y Z satisfying the following equations:
x=Z/X y=Z/Y
Operation | Assumptions | Cost | Readdition cost |
---|---|---|---|
addition | Z1=1 and Z2=1 | 7M + 1*a | 7M + 1*a |
addition | Z2=1 | 8M + 1S + 1*a + 1*d | 8M + 1S + 1*a + 1*d |
addition | 9M + 1S + 1*a + 1*d | 9M + 1S + 1*a + 1*d | |
doubling | Z1=1 and d2=2*d | 3M + 3S + 1*a | |
doubling | d2=2*d | 3M + 4S + 1*a + 1*d2 |
C = X1*X2 D = Y1*Y2 E = C*D H = C-a*D I = (X1+Y1)*(X2+Y2)-C-D X3 = (E+d)*H Y3 = (E-d)*I Z3 = H*I
B = d*Z1^2
C = X1*X2
D = Y1*Y2
E = C*D
H = C-a*D
I = (X1+Y1)*(X2+Y2)-C-D
X3 = (E+B)*H
Y3 = (E-B)*I
Z3 = Z1*H*I
A = Z1*Z2
B = d*A^2
C = X1*X2
D = Y1*Y2
E = C*D
H = C-a*D
I = (X1+Y1)*(X2+Y2)-C-D
X3 = (E+B)*H
Y3 = (E-B)*I
Z3 = A*H*I
A = X1^2 B = Y1^2 U = a*B C = A+U D = A-U E = (X1+Y1)^2-A-B X3 = C*D Y3 = E*(C-d2) Z3 = D*E
A = X1^2 B = Y1^2 U = a*B C = A+U D = A-U E = (X1+Y1)^2-A-B X3 = C*D Y3 = E*(C-d2*Z1^2) Z3 = D*E