y^2=x^4+2*a*x^2+1Affine addition formulas: (x1,y1)+(x2,y2)=(x3,y3) where
x3 = (x1*y2+y1*x2)/(1-(x1*x2)^2) y3 = ((1+(x1*x2)^2)*(y1*y2+2*a*x1*x2)+2*x1*x2*(x1^2+x2^2))/(1-(x1*x2)^2)^2Affine doubling formulas: 2(x1,y1)=(x3,y3) where
x3 = (x1*y1+y1*x1)/(1-(x1*x1)^2) y3 = ((1+(x1*x1)^2)*(y1*y1+2*a*x1*x1)+2*x1*x1*(x1^2+x1^2))/(1-(x1*x1)^2)^2Affine negation formulas: -(x1,y1)=(-x1,y1).
The neutral element of a Jacobi quartic is the point (0,1).
a^2+c^2=1and represent x y as X XX Y Z ZZ satisfying the following equations:
x=X/Z y=Y/ZZ XX=X^2 ZZ=Z^2
Doubling-oriented XXYZZR coordinates [more information] make the additional assumptions
a^2+c^2=1and represent x y as X XX Y Z ZZ R satisfying the following equations:
x=X/Z y=Y/ZZ XX=X^2 ZZ=Z^2 R=2*X*Z
Doubling-oriented XYZ coordinates [more information] make the additional assumptions
a^2+c^2=1and represent x y as X Y Z satisfying the following equations:
x=X/Z
y=Y/Z^2
XXYZZ coordinates [more information] represent x y as X XX Y Z ZZ satisfying the following equations:
x=X/Z y=Y/ZZ XX=X^2 ZZ=Z^2
XXYZZR coordinates [more information] represent x y as X XX Y Z ZZ R satisfying the following equations:
x=X/Z y=Y/ZZ XX=X^2 ZZ=Z^2 R=2*X*Z
XYZ coordinates [more information] represent x y as X Y Z satisfying the following equations:
x=X/Z
y=Y/Z^2