s^2+c^2=1 a*s^2+d^2=1Affine addition formulas: (s1,c1,d1)+(s2,c2,d2)=(s3,c3,d3) where
s3 = (c2*s1*d2+d1*s2*c1)/(c2^2+(d1*s2)^2) c3 = (c2*c1-d1*s2*s1*d2)/(c2^2+(d1*s2)^2) d3 = (d1*d2-a*s1*c1*s2*c2)/(c2^2+(d1*s2)^2)Affine doubling formulas: 2(s1,c1,d1)=(s3,c3,d3) where
s3 = (c1*s1*d1+d1*s1*c1)/(c1^2+(d1*s1)^2) c3 = (c1*c1-d1*s1*s1*d1)/(c1^2+(d1*s1)^2) d3 = (d1*d1-a*s1*c1*s1*c1)/(c1^2+(d1*s1)^2)Affine negation formulas: -(s1,c1,d1)=(-s1,c1,d1).
The neutral element of a Jacobi intersection is the point (0,1,1). The parameter a is required to be different from 0 and 1.
s=S/Z c=C/Z d=D/Z SC=S*C DZ=D*Z
Projective coordinates [more information] represent s c d as S C D Z satisfying the following equations:
s=S/Z c=C/Z d=D/Z