x^3+y^3+1=3*d*x*y
Extended coordinates [database entry] represent x y as X Y Z XX YY ZZ XY YZ XZ satisfying the following equations:
x=X/Z y=Y/Z XX=X*X YY=Y*Y ZZ=Z*Z XY=2*X*Y XZ=2*X*Z YZ=2*Y*Z
Operation | Assumptions | Cost | Readdition cost |
---|---|---|---|
addition | Z2=1 | 5M + 6S | 5M + 6S |
addition | 6M + 6S | 6M + 6S | |
doubling | 3M + 6S | ||
doubling | 3M + 6S | ||
scaling | 1I + 3M + 2S |
X3 = YY1*XZ2-XZ1*YY2 Y3 = XX1*YZ2-YZ1*XX2 Z3 = ZZ1*XY2-XY1 XX3 = X3^2 YY3 = Y3^2 ZZ3 = Z3^2 XY3 = (X3+Y3)^2-XX3-YY3 XZ3 = (X3+Z3)^2-XX3-ZZ3 YZ3 = (Y3+Z3)^2-YY3-ZZ3
X3 = YY1*XZ2-XZ1*YY2 Y3 = XX1*YZ2-YZ1*XX2 Z3 = ZZ1*XY2-XY1*ZZ2 XX3 = X3^2 YY3 = Y3^2 ZZ3 = Z3^2 XY3 = (X3+Y3)^2-XX3-YY3 XZ3 = (X3+Z3)^2-XX3-ZZ3 YZ3 = (Y3+Z3)^2-YY3-ZZ3
X3 = (XY1-YZ1)*(XZ1+2*(XX1+ZZ1)) Y3 = (XZ1-XY1)*(YZ1+2*(YY1+ZZ1)) Z3 = (YZ1-XZ1)*(XY1+2*(XX1+YY1)) XX3 = X3^2 YY3 = Y3^2 ZZ3 = Z3^2 XY3 = (X3+Y3)^2-XX3-YY3 XZ3 = (X3+Z3)^2-XX3-ZZ3 YZ3 = (Y3+Z3)^2-YY3-ZZ3
X3 = (XY1-YZ1)*(XZ1+2*(XX1+ZZ1)) Y3 = (XZ1-XY1)*(YZ1+2*(YY1+ZZ1)) Z3 = (YZ1-XZ1)*(XY1+2*(XX1+YY1)) XX3 = X3^2 YY3 = Y3^2 ZZ3 = Z3^2 XY3 = (X3+Y3)^2-XX3-YY3 XZ3 = (X3+Z3)^2-XX3-ZZ3 YZ3 = (Y3+Z3)^2-YY3-ZZ3
A = 1/Z1 X3 = A*X1 Y3 = A*Y1 Z3 = 1 XX3 = X3^2 YY3 = Y3^2 ZZ3 = 1 XZ3 = 2*X3 YZ3 = 2*Y3 XY3 = XZ3*Y3