Explicit-Formulas Database
Genus-1 curves over large-characteristic fields

Tripling-oriented Doche–Icart–Kohel curves

An elliptic curve in tripling-oriented Doche–Icart–Kohel form [database entry; Sage verification script; Sage output] has parameters a and coordinates x y satisfying the following equations:
  y2=x3+3*a*(x+1)2
Affine addition formulas: (x1,y1)+(x2,y2)=(x3,y3) where
  x3 = (-x13+(x2-3*a)*x12+(x22+6*a*x2)*x1+(y12-2*y2*y1+(-x23-3*a*x22+y22)))/(x12-2*x2*x1+x22)
  y3 = ((-y1+2*y2)*x13+(-3*a*y1+(-3*y2*x2+3*a*y2))*x12+((3*x22+6*a*x2)*y1-6*a*y2*x2)*x1+(y13-3*y2*y12+(-2*x23-3*a*x22+3*y22)*y1+(y2*x23+3*a*y2*x22-y23)))/(-x13+3*x2*x12-3*x22*x1+x23)
Affine doubling formulas: 2(x1,y1)=(x3,y3) where
  x3 = 9/(4*y12)*x14+9/y12*a*x13+(9/y12*a2+9/y12*a)*x12+(18/y12*a2-2)*x1+(9/y12*a2-3*a)
  y3 = -27/(8*y13)*x16-81/(4*y13)*a*x15+(-81/(2*y13)*a2-81/(4*y13)*a)*x14+(-27/y13*a3-81/y13*a2+9/(2*y1))*x13+(-81/y13*a3-81/(2*y13)*a2+27/(2*y1)*a)*x12+(-81/y13*a3+9/y1*a2+9/y1*a)*x1+(-27/y13*a3+9/y1*a2-y1)
Affine negation formulas: -(x1,y1)=(x1,-y1).

Tripling-oriented Doche–Icart–Kohel curves were introduced in 2006 Doche–Icart–Kohel.

The neutral element of the curve is the unique point at infinity, namely (0:1:0) in projective coordinates. The parameter a is required to be different from 0 and 9/4.

Representations for fast computations

Standard coordinates [more information] represent x y as X Y Z ZZ satisfying the following equations:
  x=X/Z2
  y=Y/Z3
  ZZ=Z2