y^2+x*y=x^3+a2*x^2+a6
Lopez-Dahab coordinates with a2=1 [database entry] make the additional assumptions
a2=1and represent x y as X Y Z satisfying the following equations:
x=X/Z
y=Y/Z^2
Operation | Assumptions | Cost | Readdition cost |
---|---|---|---|
addition | Z1=1 and Z2=1 | 5M + 3S + 1*a2 | 5M + 3S + 1*a2 |
addition | Z2=1 | 8M + 5S + 1*a2 | 8M + 5S + 1*a2 |
addition | 13M + 4S | 13M + 3S | |
doubling | Z1=1 | 1M + 3S + 1*a2 + 1*a6 | |
doubling | sqrta6^2=a6 | 3M + 5S + 1*sqrta6 | |
doubling | 3M + 5S + 1*a2 + 1*a6 | ||
doubling | 4M + 4S + 1*a2 |
A = Y1+Y2 B = X1+X2 Z3 = B^2 D = X2*Z3 X3 = A^2+B*(A+Z3+a2*B) Y3 = (D+X3)*(A*B+Z3)+(Y2+X2)*Z3^2
A = Y1+Y2*Z1^2 B = X1+X2*Z1 C = B*Z1 Z3 = C^2 D = X2*Z3 X3 = A^2+C*(A+B^2+a2*C) Y3 = (D+X3)*(A*C+Z3)+(Y2+X2)*Z3^2
A = X1*Z2 B = X2*Z1 C = A^2 D = B^2 E = A+B F = C+D G = Y1*Z2^2 H = Y2*Z1^2 I = G+H J = I*E Z3 = F*Z1*Z2 X3 = A*(H+D)+B*(C+G) Y3 = (A*J+F*G)*F+(J+Z3)*X3
C = X1^2 Z3 = C X3 = C^2+a6 Y3 = (Y1^2+a2*Z3+a6)*X3+a6*Z3
A = X1^2 B = sqrta6*Z1^2 C = X1*Z1 Z3 = C^2 X3 = (A+B)^2 Y3 = (A*C+(Y1+B)*(A+B))^2
A = Z1^2 B = a6*A^2 C = X1^2 Z3 = A*C X3 = C^2+B Y3 = (Y1^2+a2*Z3+B)*X3+Z3*B
A = X1*Z1 B = X1^2 C = B+Y1 D = A*C Z3 = A^2 X3 = C^2+D+a2*Z3 Y3 = (Z3+D)*X3+B^2*Z3