y^2+x*y=x^3+a2*x^2+a6
Lambda coordinates [database entry] represent x y as X L Z satisfying the following equations:
x=X/Z y/x=(L-X)/Z
Source: 2013 Oliveira–López–Aranha–Rodríguez-Henríquez "Lambda coordinates for binary elliptic curves".
Operation | Assumptions | Cost | Readdition cost |
---|---|---|---|
addition | 11M + 2S | 11M + 2S | |
doubling | a21=a2+1 and a226=a2^2+a6 | 3M + 4S + 1*a2 + 1*a226 + 1*a21 | |
doubling | 4M + 4S + 1*a2 |
A = L1*Z2 B = L2*Z1 C = A+B D = X1*Z2 E = X2*Z1 F = D+E G = F^2 H = C*D I = C*E J = C*G K = J*Z2 X3 = H*I L3 = (I+G)^2+K*(L1+Z1) Z3 = K*Z1
A = Z1^2 B = L1+Z1 C = L1*B D = a2*A E = C+D F = L1+X1 G = F^2 H = A^2 X3 = E^2 Z3 = E*A L3 = G*(G+E+A)+a226*H+X3+a21*Z3
A = Z1^2 B = L1^2 C = L1*Z1 D = a2*A E = B+C+D F = X1*Z1 X3 = E^2 Z3 = E*A L3 = F^2+X3+E*C+Z3