On Some Constructions for Authenticated Encryption with Associated Data

Palash Sarkar

Applied Statistics Unit Indian Statistical Institute, Kolkata India palash@isical.ac.in

(Partially based on joint work with Debrup Chakraborty)

Directions in Authenticated Ciphers – DIAC 2012, 6th July 2012

<ロ> <四> <四> <四> <四> <四</p>

<ロ> <問> <問> < 回> < 回> 、

イロン イ団 とく ヨン ・ ヨン …

We will consider:

- Single-pass block cipher modes of operations.
 - From tweakable block ciphers.
 - From (plain) block ciphers.

We will consider:

- Single-pass block cipher modes of operations.
 - From tweakable block ciphers.
 - From (plain) block ciphers.
- Stream cipher with IV and a hash function (with provably low collision and differential probabilities).

We will consider:

- Single-pass block cipher modes of operations.
 - From tweakable block ciphers.
 - From (plain) block ciphers.
- Stream cipher with IV and a hash function (with provably low collision and differential probabilities).

Other approaches:

- Direct construction of an integrated primitive: PHELIX, SOBER, AEGIS, ...
- From permutations (Bertoni at al 2011).
- Generic conversion from AE to AEAD: AE+MAC (Rogaway 2002); AE+CRHF (Sarkar 2010).

- **→ → →**

Some AE(AD) Schemes from Block Ciphers

Two-pass: Cost per block (approx): 2[BC] or 1[BC]+1[M].

- CCM: Counter + CBC-MAC; standardised by NIST (USA).
- GCM: Counter + (universal) hash; standardised by NIST (USA).
- CWC: Carter-Wegman + Counter Mode; EAX; CHM: CENC + hash; CCFB: between one and two-pass.

Some AE(AD) Schemes from Block Ciphers

Two-pass: Cost per block (approx): 2[BC] or 1[BC]+1[M].

- CCM: Counter + CBC-MAC; standardised by NIST (USA).
- GCM: Counter + (universal) hash; standardised by NIST (USA).
- CWC: Carter-Wegman + Counter Mode; EAX; CHM: CENC + hash; CCFB: between one and two-pass.
- Single-pass: Cost per block (approx): 1[BC]+SOMETHING.
 - Constructions having associated (US) patents:
 - IACBC, IAPM: (Jutla, 2001);
 - XCBC, XECB: (Gligor-Donescu, 2001);
 - OCB: (Rogaway et al, 2001; Rogaway 2004; Krovetz-Rogaway, 2011).

Some AE(AD) Schemes from Block Ciphers

Two-pass: Cost per block (approx): 2[BC] or 1[BC]+1[M].

- CCM: Counter + CBC-MAC; standardised by NIST (USA).
- GCM: Counter + (universal) hash; standardised by NIST (USA).
- CWC: Carter-Wegman + Counter Mode; EAX; CHM: CENC + hash; CCFB: between one and two-pass.
- Single-pass: Cost per block (approx): 1[BC]+SOMETHING.
 - Constructions having associated (US) patents:
 - IACBC, IAPM: (Jutla, 2001);
 - XCBC, XECB: (Gligor-Donescu, 2001);
 - OCB: (Rogaway et al, 2001; Rogaway 2004; Krovetz-Rogaway, 2011).
 - Constructions without assoicated patents:
 - Chakraborty-Sarkar (2006, 2008); Sarkar (2010).

AE(AD) from Tweakable Block Ciphers

< A

(Tweakable) Block Ciphers

- Non-secret tweak allows flexibility in designing applications.
- Formalised by Liskov-Rivest-Wagner (2002).

Palash Sarkar (ISI, Kolkata)

DIAC 2012 10 / 32

< ロ > < 同 > < 回 > < 回 >

Rogaway (2004).

- Provides efficient construction of a TBC family.
- Introduces a technique for using a TBC family to construct different modes of operations.

Rogaway (2004).

- Provides efficient construction of a TBC family.
- Introduces a technique for using a TBC family to construct different modes of operations.

Chakraborty-Sarkar (2006, 2008).

- A new TBC family obtained by generalising Rogaway's construction.
 - Can be instantiated over $GF(2^n)$ or \mathbb{Z}_{2^n} .
- Provides two techniques for constructing modes of operations.
 - The first technique generalises Rogaway's work.
 - A second new technique.
- Provides a family of modes of operations for MAC, AE and AEAD.
 - Only one of each kind was known earlier.

イロト イポト イヨト イヨ

From BC to TBC (Generalising Rogaway 2004)

XE Construction (tweakable PRP): $\widetilde{E_{\kappa}}^{N,l}(M) = E_{\kappa}(M + \Delta)$.

XEX Construction (tweakable SPRP): $\widetilde{E_{K}}^{N,l}(M) = E_{K}(M + \Delta) - \Delta$.

where $\Delta = f_l(\mathcal{N})$ and $\mathcal{N} = E_{\mathcal{K}}(N)$.

- **f**₁, **f**₂, ... is a masking sequence.
- (*N*, *I*) is the tweak; tweak space is $\{0, 1\}^n \times \{1, 2, ..., 2^n 2\}$.
- Addition (and subtraction) is over a ring R.

From BC to TBC (Generalising Rogaway 2004)

XE Construction (tweakable PRP): $\widetilde{E_{\kappa}}^{N,l}(M) = E_{\kappa}(M + \Delta)$.

XEX Construction (tweakable SPRP): $\widetilde{E_{K}}^{N,l}(M) = E_{K}(M + \Delta) - \Delta$.

where $\Delta = f_l(\mathcal{N})$ and $\mathcal{N} = E_{\mathcal{K}}(N)$.

- f_1, f_2, \ldots is a masking sequence.
- (*N*, *I*) is the tweak; tweak space is $\{0, 1\}^n \times \{1, 2, ..., 2^n 2\}$.
- Addition (and subtraction) is over a ring **R**.

The generalisation arises from the notion of masking sequence and working over \mathbf{R} .

 f_1, f_2, \dots, f_m is an (n, m, μ) masking sequence if: $(f_s : \{0, 1\}^n \rightarrow \{0, 1\}^n)$

$$\begin{aligned} & \mathsf{Prob}[f_{\mathcal{S}}(\mathcal{N}) = \alpha] & \leq \quad \frac{1}{\mu} \\ & \mathsf{Prob}[f_{\mathcal{S}}(\mathcal{N}) = \mathcal{N} + \alpha] & \leq \quad \frac{1}{\mu} \\ & \mathsf{Prob}[f_{\mathcal{S}}(\mathcal{N}) = f_t(\mathcal{N}) + \alpha] & \leq \quad \frac{1}{\mu} \\ & \mathsf{Prob}[f_{\mathcal{S}}(\mathcal{N}) = f_t(\mathcal{N}') + \alpha] & \leq \quad \frac{1}{\mu} \end{aligned}$$

where

- \mathcal{N} and \mathcal{N}' are randomly and independently chosen from $\{0,1\}^n$.
- α is any fixed *n*-bit string.

Instantiations of R

R as $GF(2^n)$:

- Define $f_i(\mathcal{N}) = \mathcal{N}G^i$ where G is an $n \times n$ binary matrix whose characteristic polynomial is primitive over GF(2).
- $f_1, f_2, ..., f_{2^n-2}$ is an $(n, 2^n 2, 2^n)$ masking sequence.
- Efficient instantiations of *G*: powering method, (word oriented) LFSR, CA.

R as $GF(2^n)$:

- Define $f_i(\mathcal{N}) = \mathcal{N}G^i$ where G is an $n \times n$ binary matrix whose characteristic polynomial is primitive over GF(2).
- $f_1, f_2, ..., f_{2^n-2}$ is an $(n, 2^n 2, 2^n)$ masking sequence.
- Efficient instantiations of *G*: powering method, (word oriented) LFSR, CA.

R as Z_{2^n} :

- Let $p = 2^n + \delta$ be a prime, with δ as small as possible, eg: $p = 2^{128} + 51$.
- Define $f_i(\mathcal{N}) = ((i+1)\mathcal{N} \mod p) \mod 2^n$.
- $f_1, f_2, ..., f_{2^n-2}$ is an $(n, 2^n 2, 2^{n-1}/(\delta + 1))$ masking sequence.

R as $GF(2^n)$:

- Define $f_i(\mathcal{N}) = \mathcal{N}G^i$ where G is an $n \times n$ binary matrix whose characteristic polynomial is primitive over GF(2).
- $f_1, f_2, ..., f_{2^n-2}$ is an $(n, 2^n 2, 2^n)$ masking sequence.
- Efficient instantiations of *G*: powering method, (word oriented) LFSR, CA.

R as Z_{2^n} :

- Let $p = 2^n + \delta$ be a prime, with δ as small as possible, eg: $p = 2^{128} + 51$.
- Define $f_i(\mathcal{N}) = ((i+1)\mathcal{N} \mod p) \mod 2^n$.
- $f_1, f_2, ..., f_{2^n-2}$ is an $(n, 2^n 2, 2^{n-1}/(\delta + 1))$ masking sequence.

Rogaway (2004): **R** as $GF(2^n)$ with the powering construction.

XEX-TBC \widetilde{E} with tweak space $\{0,1\}^n \times \{1,2,\ldots,2^{n/2}\} \times \{0,1\}$.

Palash Sarkar (ISI, Kolkata)

AEAD Constructions

э DIAC 2012 15/32

- 24

• • • • • • • • • • • •

XEX-TBC \widetilde{E} with tweak space $\{0,1\}^n \times \{1,2,\ldots,2^{n/2}\} \times \{0,1\}$.

Figure: Rogaway's 2004 TBC-to-AE construction lifted to R.

Palash Sarkar (ISI, Kolkata)

Required tweak space: $\{0,1\}^n \times \{1,2,\ldots,2^{n/2}\} \times \{0,1\}.$

Tweak space of XEX-TBC: $\{0, 1\}^n \times \{1, 2, ..., 2^n - 2\}$.

E 990

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Required tweak space: $\{0,1\}^n \times \{1,2,\ldots,2^{n/2}\} \times \{0,1\}.$

Tweak space of XEX-TBC: $\{0, 1\}^n \times \{1, 2, ..., 2^n - 2\}$.

Injective Map $\phi : \{1, 2, \dots, 2^{n/2}\} \times \{0, 1\} \rightarrow \{1, 2, \dots, 2^n - 2\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Required tweak space: $\{0,1\}^n \times \{1,2,...,2^{n/2}\} \times \{0,1\}.$

Tweak space of XEX-TBC: $\{0, 1\}^n \times \{1, 2, ..., 2^n - 2\}$.

Injective Map $\phi : \{1, 2, \dots, 2^{n/2}\} \times \{0, 1\} \rightarrow \{1, 2, \dots, 2^n - 2\}.$

- Linear Separation: $\phi(i, b) = i + Lb$ where *L* is an appropriately chosen "large" integer.
 - **R** as $GF(2^n)$: L is the discrete log of (x + 1) (Rogaway 2004).
 - **R** as Z_{2^n} : $L = 2^{n/2}$.
- Interleaved Separation: $\phi(i, b) = 2i + b$.
 - Avoids the (design time) discrete log computation.

Required tweak space: $\{0,1\}^n \times \{1,2,...,2^{n/2}\} \times \{0,1\}.$

Tweak space of XEX-TBC: $\{0, 1\}^n \times \{1, 2, ..., 2^n - 2\}$.

Injective Map $\phi : \{1, 2, \dots, 2^{n/2}\} \times \{0, 1\} \rightarrow \{1, 2, \dots, 2^n - 2\}.$

- Linear Separation: $\phi(i, b) = i + Lb$ where *L* is an appropriately chosen "large" integer.
 - **R** as $GF(2^n)$: *L* is the discrete log of (x + 1) (Rogaway 2004).
 - **R** as Z_{2^n} : $L = 2^{n/2}$.
- Interleaved Separation: $\phi(i, b) = 2i + b$.
 - Avoids the (design time) discrete log computation.

Variations of the above technique provides constructions for MAC and AEAD.

イロト 不得 トイヨト イヨト 二日

AE(AD) from (Plain) Block Ciphers

< A

Random function $f : \mathcal{N} \times \mathcal{X} \to \mathcal{X} \times \{0,1\}^t$; f(N, X) = (Y, tag). (Randomness arising from uniform random *K*.)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AE Functions

Random function $f : \mathcal{N} \times \mathcal{X} \to \mathcal{X} \times \{0,1\}^t$; f(N,X) = (Y, tag). (Randomness arising from uniform random *K*.)

- $f_N^{\text{main}}(X) \stackrel{\Delta}{=} Y$, a length preserving permutation.
- \tilde{f} : authentication function associated with f. $\tilde{f}(N, Y) \stackrel{\Delta}{=} \text{tag if } f(N, X) = (Y, \text{tag}) \text{ for some } X \in \mathcal{X};$

Random function $f : \mathcal{N} \times \mathcal{X} \to \mathcal{X} \times \{0, 1\}^t$; f(N, X) = (Y, tag). (Randomness arising from uniform random *K*.)

- $f_N^{\text{main}}(X) \stackrel{\Delta}{=} Y$, a length preserving permutation.
- \tilde{f} : authentication function associated with f. $\tilde{f}(N, Y) \stackrel{\Delta}{=} \text{tag if } f(N, X) = (Y, \text{tag}) \text{ for some } X \in \mathcal{X};$
- AE-privacy of f: follows from
 - PRF-property of *f*^{main} against nonce-respecting adversaries.
- AE-auth of f: follows from
 - AE-privacy of f;
 - PRF-property of *f*.

Random function $f : \mathcal{N} \times \mathcal{X} \to \mathcal{X} \times \{0, 1\}^t$; f(N, X) = (Y, tag). (Randomness arising from uniform random *K*.)

- $f_N^{\text{main}}(X) \stackrel{\Delta}{=} Y$, a length preserving permutation.
- \tilde{f} : authentication function associated with f. $\tilde{f}(N, Y) \stackrel{\Delta}{=} \text{tag if } f(N, X) = (Y, \text{tag}) \text{ for some } X \in \mathcal{X};$
- AE-privacy of f: follows from
 - PRF-property of *f*^{main} against nonce-respecting adversaries.
- AE-auth of f: follows from
 - AE-privacy of f;
 - PRF-property of \tilde{f} .

 \tilde{f} itself can serve as a standalone MAC function.

PAE (Sarkar 2010): Only Full Blocks

 $\psi: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is a linear map whose minimal polynomial over \mathbb{F}_2 is primitive.

Palash Sarkar (ISI, Kolkata)

DIAC 2012 19 / 32

PAE (Sarkar 2010): Last Block is Partial

Palash Sarkar (ISI, Kolkata)

DIAC 2012 20 / 32

- 3 >

PAEAD.Encrypt_{*E_K*,fStr}(*N*, *H*, *P*) 1. if *H* is null, return PAE.Encrypt_{*E_K*(*N*, *P*); 2. (*C*, tag₁) = PAE.Encrypt_{*E_K*(*N*, *P*); 3. $v = D_K$ (fStr); 4. tag₂ = iPMAC_{*D_K*(v||*H*); 5. return (*C*, tag₁ \oplus tag₂).}}}

- fStr is a fixed string without any secrecy requirement.
- iPMAC is a MAC algorithm which is also given in Sarkar (2010).

• Single-pass with efficient masking:

- Word-oriented LFSR based masking should be faster than competitors on 32-bit machines.
- Support for AES-NI and 128-bit instructions has changed the game for Intel processors.

A D M A A A M M

• Single-pass with efficient masking:

- Word-oriented LFSR based masking should be faster than competitors on 32-bit machines.
- Support for AES-NI and 128-bit instructions has changed the game for Intel processors.
- But, 98% of the CPU market consists of embedded CPUs (Christof Paar, Indocrypt 2011).

★ ∃ ► 4

• Single-pass with efficient masking:

- Word-oriented LFSR based masking should be faster than competitors on 32-bit machines.
- Support for AES-NI and 128-bit instructions has changed the game for Intel processors.
- But, 98% of the CPU market consists of embedded CPUs (Christof Paar, Indocrypt 2011).
- Reconfigurable: easy to change the masking functions.
 - Simply choose another suitable ψ .
 - Yields a large family of schemes enjoying the same security promise.
 - Provides an opportunity to combine "provable security" with "security-by-obscurity".

- Versatility: A single module (hardware/software) can be used for different tasks.
 - Authentication.
 - Authenticated encryption.
 - Authenticated encryption with associated data.

- Versatility: A single module (hardware/software) can be used for different tasks.
 - Authentication.
 - Authenticated encryption.
 - Authenticated encryption with associated data.
- Simplified Decryption: The decryption algorithms of PAE and PAEAD do not require $E_{\mathcal{K}}()$.
 - Leads to smaller hardware for lower-level operatives who only need to decrypt the encrypted instructions that are received.

→ ∃ →

- Versatility: A single module (hardware/software) can be used for different tasks.
 - Authentication.
 - Authenticated encryption.
 - Authenticated encryption with associated data.
- Simplified Decryption: The decryption algorithms of PAE and PAEAD do not require $E_{\mathcal{K}}()$.
 - Leads to smaller hardware for lower-level operatives who only need to decrypt the encrypted instructions that are received.
- Simplified Encryption: Obtained from a variant PAE-1 (and also PAEAD-1).
 - The encryption algorithm requires only *E_κ*(); leads to smaller hardware for devices which only need to transmit encrypted information.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

AE(AD) from Stream Ciphers With IV

< 47 ▶

-

Stream cipher with IV: $SC_{\mathcal{K}} : \{0,1\}^n \to \{0,1\}^L$.

- *L* long enough to encrypt practical-sized messages.
- Modelled as a PRF.

Stream cipher with IV: $SC_{\mathcal{K}} : \{0,1\}^n \to \{0,1\}^L$.

- *L* long enough to encrypt practical-sized messages.
- Modelled as a PRF.

Hash function: a keyed family {Hash $_{\tau}$ }; τ is the hash key.

- Low collision probability. For all distinct x and x' $Pr_{\tau}[Hash_{\tau}(x) = Hash_{\tau}(x')]$ is low.
- Low differential probability. For all distinct x and x' and any y, $\Pr_{\tau}[\operatorname{Hash}_{\tau}(x) \oplus \operatorname{Hash}_{\tau}(x') = y]$ is low.

Stream cipher with IV: $SC_{\mathcal{K}} : \{0,1\}^n \to \{0,1\}^L$.

- *L* long enough to encrypt practical-sized messages.
- Modelled as a PRF.

Hash function: a keyed family {Hash $_{\tau}$ }; τ is the hash key.

- Low collision probability. For all distinct x and x' $Pr_{\tau}[Hash_{\tau}(x) = Hash_{\tau}(x')]$ is low.
- Low differential probability. For all distinct x and x' and any y, $\Pr_{\tau}[\operatorname{Hash}_{\tau}(x) \oplus \operatorname{Hash}_{\tau}(x') = y]$ is low.

Type-I hash function: key is a short fixed length string.

• Example: polynomial hashing.

Type-II hash function: key is as long as the message (or longer).

• Example: multilinear hash; UMAC.

$$\begin{array}{l} \mathsf{AE-1.Encrypt}_{\mathcal{K},\tau}(\mathcal{N},\mathcal{M})\\ (\mathcal{R},\mathcal{Z}) = \mathsf{SC}_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C} = \mathcal{M} \oplus \mathcal{Z};\\ \mathsf{tag} = \mathsf{Hash}_{\tau}(\mathcal{C}) \oplus \mathcal{R}. \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

AE

AE-1.Encrypt_{K,\tau}(N, M)
$$(R, Z) = SC_{K}(N);$$

 $C = M \oplus Z;$
 $tag = Hash_{\tau}(C) \oplus R.$ AE-2.Encrypt_{K,K'}(N, M)
 $\tau = SC_{K}(K');$
 $(R, Z) = SC_{K}(N);$
 $C = M \oplus Z;$
 $tag = Hash_{\tau}(C) \oplus R.$

DIAC 2012 26 / 32

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

AE

$\begin{array}{l} AE-1.Encrypt_{\mathcal{K},\tau}(\mathcal{N},\mathcal{M})\\ (\mathcal{R},\mathcal{Z})=SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C}=\mathcal{M}\oplus\mathcal{Z};\\ tag=Hash_{\tau}(\mathcal{C})\oplus\mathcal{R}. \end{array}$	$\begin{array}{l} AE-2.Encrypt_{\mathcal{K},\mathcal{K}'}(\mathcal{N},\mathcal{M})\\ \tau = SC_{\mathcal{K}}(\mathcal{K}');\\ (\mathcal{R},\mathcal{Z}) = SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C} = \mathcal{M} \oplus \mathcal{Z};\\ tag = Hash_{\tau}(\mathcal{C}) \oplus \mathcal{R}. \end{array}$
$\begin{array}{l} AE-3.Encrypt_{\mathcal{K},\tau}(\mathcal{N},\mathcal{M})\\ (\mathcal{R},\mathcal{Z})=SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C}=\mathcal{M}\oplus\mathcal{Z};\\ tag=Hash_{\tau}(\mathcal{M})\oplus\mathcal{R}. \end{array}$	$\begin{array}{l} AE-4.Encrypt_{\mathcal{K},\mathcal{K}'}(\mathcal{N},\mathcal{M})\\ \tau = SC_{\mathcal{K}}(\mathcal{K}');\\ (\mathcal{R},\mathcal{Z}) = SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C} = \mathcal{M} \oplus \mathcal{Z};\\ tag = Hash_{\tau}(\mathcal{M}) \oplus \mathcal{R}. \end{array}$

Palash Sarkar (ISI, Kolkata)

AEAD Constructions

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

AE

$\begin{array}{l} AE-1.Encrypt_{\mathcal{K},\tau}(\mathcal{N},\mathcal{M})\\ (\mathcal{R},\mathcal{Z})=SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C}=\mathcal{M}\oplus\mathcal{Z};\\ tag=Hash_{\tau}(\mathcal{C})\oplus\mathcal{R}. \end{array}$	$\begin{array}{l} AE-2.Encrypt_{\mathcal{K},\mathcal{K}'}(\mathcal{N},\mathcal{M})\\ \tau = SC_{\mathcal{K}}(\mathcal{K}');\\ (\mathcal{R},\mathcal{Z}) = SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C} = \mathcal{M} \oplus \mathcal{Z};\\ tag = Hash_{\tau}(\mathcal{C}) \oplus \mathcal{R}. \end{array}$
$\begin{array}{l} AE-3.Encrypt_{\mathcal{K},\tau}(\mathcal{N},\mathcal{M})\\ (\mathcal{R},\mathcal{Z})=SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C}=\mathcal{M}\oplus\mathcal{Z};\\ tag=Hash_{\tau}(\mathcal{M})\oplus\mathcal{R}. \end{array}$	$\begin{array}{l} AE-4.Encrypt_{\mathcal{K},\mathcal{K}'}(\mathcal{N},\mathcal{M})\\ \tau = SC_{\mathcal{K}}(\mathcal{K}');\\ (\mathcal{R},\mathcal{Z}) = SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C} = \mathcal{M} \oplus \mathcal{Z};\\ tag = Hash_{\tau}(\mathcal{M}) \oplus \mathcal{R}. \end{array}$

- AE-1: used by Bernstein during eSTREAM as a standard way of achieving AE; others from Sarkar (2011).
- AE-1, AE-3: suitable for Type-I hash functions; AE-2, AE-4: suitable for Type-II hash functions.
- AE-1, AE-2: hash the ciphertext; AE-3, AE-4: hash the message.

```
\begin{aligned} \mathsf{AEAD-1.Encrypt}_{\mathcal{K},\tau}(\mathcal{H},\mathcal{N},\mathcal{M}) \\ (\mathcal{R},\mathcal{Z}) &= \mathsf{SC}_{\mathcal{K}}(\mathcal{N}); \\ \mathcal{C} &= \mathcal{M} \oplus \mathcal{Z}; \\ \mathsf{tag} &= \mathsf{Hash}_{\tau}(\mathcal{H},\mathcal{C}) \oplus \mathcal{R}. \end{aligned}
```

	AEAD-2. Encrypt _{K K'} (H, N, M)
AEAD-1. Encrypt _{K,τ} (H, N, M)	$\tau = SC_{\kappa}(K')$
$(R,Z) = \operatorname{SC}_{\mathcal{K}}(N);$	$(P, Z) = SC_{V}(N);$
$C = M \oplus Z;$	$(\mathbf{n},\mathbf{z}) = \mathbf{SO}_{K}(\mathbf{n}),$
tag – Hash $(H, C) \oplus B$	$C = M \oplus Z;$
$\operatorname{tag} = \operatorname{Had}_{\tau}(H, \mathbf{O}) \oplus H.$	$tag = Hash_{\tau}(H, C) \oplus R.$

▲ ■ ▶ ■ • つ へ C DIAC 2012 27 / 32

イロト イ団ト イヨト イヨ

AEAD-1.Encrypt _{K,τ} (H, N, M)	AEAD-2.Encrypt _{K,K'} (H, N, M)
	$ au = SC_{\mathcal{K}}(\mathcal{K}');$
$(\Pi, \Sigma) = OO_K(\Pi),$ $C = M \oplus Z$	$(R,Z) = SC_{\mathcal{K}}(N);$
$tag = Hash_{\tau}(H, C) \oplus R.$	$\mathcal{C}=\mathcal{M}\oplus \mathcal{Z};$
	$tag=Hash_{ au}(H,\mathcal{C})\oplus R.$
$\begin{array}{l} AEAD-3.Encrypt_{\mathcal{K},\tau}(\mathcal{H},\mathcal{N},\mathcal{M})\\ (\mathcal{R},\mathcal{Z})=SC_{\mathcal{K}}(\mathcal{N});\\ \mathcal{C}=\mathcal{M}\oplus\mathcal{Z};\\ tag=Hash_{\tau}(\mathcal{H},\mathcal{M})\oplus\mathcal{R}. \end{array}$	AEAD-4.Encrypt _{K,K'} (H, N, M)
	$ au = SC_{\mathcal{K}}(\mathcal{K}');$
	$(R,Z) = SC_{\mathcal{K}}(N);$
	$C = M \oplus Z;$
	$tag = Hash_{ au}(H, M) \oplus R.$

AEAD (Sarkar 2011)

```
\begin{array}{l} \mathsf{AEAD-5.Encrypt}_{K,\tau}(H,N,M)\\ V = \mathsf{Hash}_{\tau}(H,N);\\ (R,Z) = \mathsf{SC}_{K}(V);\\ C = M \oplus Z;\\ \mathsf{tag} = \mathsf{Hash}_{\tau}(C) \oplus R. \end{array}
```

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$AEAD_5 Encrypt (H, N, M)$	AEAD-6.Encrypt _{K,K'} (H, N, M)
ALAD-3. Encrypt _{K,τ} (11, 14, 14)	$(\tau_1, \tau_2) = \mathrm{SC}_{\kappa}(\kappa');$
$V = \text{Hash}_{\tau}(H, N);$	$V = Hash_{-}(H N)$
$(R,Z) = SC_{\mathcal{K}}(V);$	$(P, Z) = SC_{1}(V);$
$C = M \oplus Z;$	$(11, 2) = 30_K(V),$
$tag - Hash(C) \oplus B$	$C = M \oplus Z;$
$\operatorname{tag} = \operatorname{Hash}_{\tau}(\mathbf{O}) \oplus \mathbf{H}.$	$tag=Hash_{ au_2}(\mathcal{C})\oplus \mathcal{R}.$

AEAD-5.Encrypt _{K,τ} (H, N, M) $V = \text{Hash}_{\tau}(H, N);$	$\begin{array}{l} AEAD-6.Encrypt_{\mathcal{K},\mathcal{K}'}(\mathcal{H},\mathcal{N},\mathcal{M})\\ (\tau_1,\tau_2) = SC_{\mathcal{K}}(\mathcal{K}');\\ \mathcal{V} = Hash_{\tau_1}(\mathcal{H},\mathcal{N}); \end{array}$
$(H, Z) = SC_K(V),$ $C = M \oplus Z;$ $tag = Hash_{\tau}(C) \oplus R.$	$(R,Z) = \operatorname{SC}_{\mathcal{K}}(V);$ $C = M \oplus Z;$ $\operatorname{tag} = \operatorname{Hash}_{\tau_2}(C) \oplus R.$
$\begin{array}{l} AEAD-7.Encrypt_{K,\tau}(H,N,M)\\ V = Hash_{\tau}(H,N);\\ (R,Z) = SC_K(V);\\ C = M \oplus Z;\\ tag = Hash_{\tau}(M) \oplus R. \end{array}$	$\begin{array}{l} AEAD-8.Encrypt_{\mathcal{K},\mathcal{K}'}(\mathcal{H},\mathcal{N},\mathcal{M})\\ (\tau_1,\tau_2) = SC_{\mathcal{K}}(\mathcal{K}');\\ \mathcal{V} = Hash_{\tau_1}(\mathcal{H},\mathcal{N});\\ (\mathcal{R},\mathcal{Z}) = SC_{\mathcal{K}}(\mathcal{V});\\ \mathcal{C} = \mathcal{M} \oplus \mathcal{Z};\\ tag = Hash_{\tau_2}(\mathcal{M}) \oplus \mathcal{R}. \end{array}$

Palash Sarkar (ISI, Kolkata)

Requires double-input hash function with low collision and differential probabilities.

- Efficient encoding methods have been proposed.
- Generic conversions from single-input to double-input (more generally, multiple-input) that is suitable for both Type-I and Type-II hash functions.
- Modifications of well-known hash functions such as Poly1305 and UMAC to handle double inputs.

DAEAD.Encrypt<sub>K,
$$\tau$$</sub>(H, M)
 $V = \text{Hash}_{\tau}(H, M);$
 $\text{tag} = SC_{K}(V);$
 $Z = SC_{K}(\text{tag});$
 $C = M \oplus Z;$
return (C, tag).

- Requires double-input hash functions.
- Suitable for Type-I hash functions.
- Extension to Type-II hash functions: Let K' be another n-bit key and produce τ as τ = SC_K(K').

Security

"Provable" Security:

- All schemes described here have associated security proofs.
 - Make an appropriate idealised assumption on the underlying primitive (block or stream cipher).
 - Show that the adversary cannot do much more than try to defeat the assumption.
- Analysis is in the single-user setting.

Security

"Provable" Security:

- All schemes described here have associated security proofs.
 - Make an appropriate idealised assumption on the underlying primitive (block or stream cipher).
 - Show that the adversary cannot do much more than try to defeat the assumption.
- Analysis is in the single-user setting.

Multi-User Security:

- In the multi-user setting, an attack is successful if any one out of several keys is compromised.
- Using a single 128-bit key for the entire system may not offer 128-bit security (Chatterjee-Menezes-Sarkar, 2011).
- So, for attaining 128-bit security, the key length may possibly have to be greater than 128 bits.

Thank you for your attention!

4 A N