History	Interface	AEAD in standards	AEAD in security architectures	Desiderata	Conclu

Authenticated Encryption in Practice

mcgrew@cisco.com

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
Outlin	e				

2 Interface

- Nonces and misuse resistance
- AEAD in standards
 - Issues
- AEAD in security architectures
 - Security

5 Desiderata

Desiderata

●00	0000		0000000	0000	00				
Tim	Timeline								
		Algorithms	Standards						
	1999	IAPCBC							
	2000	IACBC, AE							
	2001	OCB, AEAD							
	2002	CCM	802.11						
	2003								
	2004	GCM	802.1						
	2005		IPsec						
	2006		FC-SP, 1619.1, LTO-4						
	2007								
	2008		RFC5116						
	2009	SIV	TLSv1.2, IKE, XMLsec, S	SSH					
	2010								
	2011	OCBv3							
	2012	CBC+HMAC	SRTP, <i>JOSE</i>						

History

History	Interface	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
000					

Internet Assigned Name Authority (IANA) Registry

Numeric ID	Name	Reference
1	AEAD_AES_128_GCM	RFC5116
2	AEAD_AES_256_GCM	RFC5116
3	AEAD_AES_128_CCM	RFC5116
4	AEAD_AES_256_CCM	RFC5116
5	AEAD_AES_128_GCM_8	RFC5282
6	AEAD_AES_256_GCM_8	RFC5282
7	AEAD_AES_128_GCM_12	RFC5282
8	AEAD_AES_256_GCM_12	RFC5282
9	AEAD_AES_128_CCM_SHORT	RFC5282
10	AEAD_AES_256_CCM_SHORT	RFC5282
11	AEAD_AES_128_CCM_SHORT_8	RFC5282
12	AEAD_AES_256_CCM_SHORT_8	RFC5282
13	AEAD_AES_128_CCM_SHORT_12	RFC5282
14	AEAD_AES_256_CCM_SHORT_12	RFC5282
15	AEAD_AES_SIV_CMAC_256	RFC5297
16	AEAD_AES_SIV_CMAC_384	RFC5297
17	AEAD_AES_SIV_CMAC_512	RFC5297
18	AEAD_AES_128_CCM_8	RFC6655
19	AEAD_AES_256_CCM_8	RFC6655
20-32767	Unassigned	
32768-65535	Reserved for Private Use	

History ○○●	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
Obser	vations				

- AEAD initially adopted at link layer
- AEAD broadly used in point-to-point encryption
- All IANA algorithms use $\mathsf{PRF}: \{0,1\}^{128} \to \{0,1\}^{128}$
 - Camellia, SEED, ARIA not represented
 - Could define companion registry of PRP/PRF functions

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
RFC 5	116 inter	face			

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions			
RFC 5	RFC 5116 interface							

Inputs • Key K

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
DEC 51	116 interf				

RFC 5116 interface

Inputs

- Key K
- Nonce N

(authenticated)

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
RFC 5	116 inter	face			

Inputs

- Key K
- Nonce N
- Associated data A

(authenticated) (authenticated)

History 000	Interface	AEAD in standards	AEAD in security architect	ures Desiderata Co 0000 00	nclusions		
RFC 5116 interface							
	Inputs						
	Key K						
	Nonce I	lonce N		(authenticated)			
	 Associa 	ted data A		(authenticated)		
	Plaintex	t <i>P</i>	(encrypted	d and authenticated)		

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
RFC 5	116 inter	face			
In	puts				
	Key K				
	Nonce	Ν		(authentica	ated)

- Nonce N
- Associated data A
- Plaintext P

(authenticated) (encrypted and authenticated)

Outputs

Authenticated ciphertext C

H o	listory	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
	МІХ					

IPv4 and IPv6 cumulative packet distributions, 2008

packet size

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions

Typical parameter sizes

		P	A	Ν	t
6LoWPAN	802.15.4	0 - 87	5 - 14	13	4, 8
WiFi	802.11i	1 - 2296	22 - 30	13	8
MACsec	802.1AE	0 - 1500	16+	12	16
ESP	RFC4303	40 - 2048 [32M]	8, 12	12	16
TLS	RFC5246	1 - 2048 [16K]	13	12	16
SRTP	RFC3711	20,80,1500	12+	12	4, 10

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
Detern	ninistic n	onces			

Recommended format

History 000	Interface	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions	
Deterministic nonces						

Recommended format

Fixed	Counter
-------	---------

Partially implicit format

Fixed-Common	Fixed-Distinct	Counter	
	≺	explicit	

```
draft-mcgrew-iv-gen
```

History	Interface	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
	● 000				
Nonces and	d misuse resistan	се			

aead_encrypt(K, N, A, P)

History	Interface	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
	0000				
Nonces and	misuse resistance				

aead_encrypt(K, A, P)

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
Nonces and n	nisuse resistance				

Internal nance deperation								
Nonces and misuse resistance								
History 000	Interface 000●	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions			

Observation

Any nonce-based AEAD scheme can be made into a misuse resistant AEAD scheme by incorporating nonce generation

- Puts burden of correctness on crypto implementer, not crypto caller
- Implementations of internal nonce schemes can be validated

Interna	Internal nanoa departien									
Nonces and n	Nonces and misuse resistance									
History 000	Interface ○○○●	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions					

Observation

Any nonce-based AEAD scheme can be made into a misuse resistant AEAD scheme by incorporating nonce generation

- Puts burden of correctness on crypto implementer, not crypto caller
- Implementations of internal nonce schemes can be validated

Implication

An AEAD scheme incorporating nonce generation can provide a nonce as an output

Anti-replay protection service can be provided to the user

History 000	Interface 0000	AEAD in standards ●○○	AEAD in security architectures	Desiderata 0000	Conclusions
AEAD	RFCs				
	RFC 6367	Addition of the Car	nellia Cipher Suites to TLS, Ir	nformational, 20	011.

- **RFC 6209** Addition of the ARIA Cipher Suites to TLS, Informational, 2011.
- RFC 6054 Using Counter Modes with ESP and AH to Protect Group Traffic, Standards Track, 2010.
- RFC 5647 AES Galois Counter Mode for the SSH Protocol, Informational, 2009.
- **RFC 5487** Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES GCM, Standards Track, 2009.
- **RFC 5297** Synthetic Initialization Vector (SIV) Authenticated Encryption Using AES, Informational, 2008.
- **RFC 5289** TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES GCM, Informational, 2008.
- RFC 5288 AES GCM Cipher Suites for TLS, Standards Track, 2008.
- RFC 5282 Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol, Standards Track, 2008.
- RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2, Standards Track, 2008.
- **RFC 5116** An Interface and Algorithms for Authenticated Encryption, Standards Track, 2008.

History 000	Interface 0000	AEAD in standards ○●○	AEAD in security architectures	Desiderata	Conclusions
Issues					
Lesso	ns				

- Most protocols fine with deterministic nonces
 - Algorithms that work without deterministic nonces needed for other applications

History 000	Interface 0000	AEAD in standards ○●○	AEAD in security architectures	Desiderata	Conclusions
Issues					
Lesso	ns				

- Most protocols fine with deterministic nonces
 - Algorithms that work without deterministic nonces needed for other applications
- Contiguous authentication with discontiguous encryption
 - Awkward, but not impossible

History 000	Interface 0000	AEAD in standards ○●○	AEAD in security architectures	Desiderata	Conclusions
Issues					
Lesso	ns				

- Most protocols fine with deterministic nonces
 - Algorithms that work without deterministic nonces needed for other applications
- Contiguous authentication with discontiguous encryption
 - Awkward, but not impossible
- Global ciphers
 - Camellia, ARIA, SEED, ...

History 000	Interface 0000	AEAD in standards ○●○	AEAD in security architectures	Desiderata	Conclusions
Issues					
Lesso	ns				

- Most protocols fine with deterministic nonces
 - Algorithms that work without deterministic nonces needed for other applications
- Contiguous authentication with discontiguous encryption
 - Awkward, but not impossible
- Global ciphers
 - Camellia, ARIA, SEED, ...
- No way to separate authentication from confidentiality
 - This is a goal, not a problem!

History 000	Interface 0000	AEAD in standards ○●○	AEAD in security architectures	Desiderata	Conclusions
Issues					
Lesso	ns				

- Most protocols fine with deterministic nonces
 - Algorithms that work without deterministic nonces needed for other applications
- Contiguous authentication with discontiguous encryption
 - Awkward, but not impossible
- Global ciphers
 - Camellia, ARIA, SEED, ...
- No way to separate authentication from confidentiality
 - This is a goal, not a problem!
 - May be desirable for protocols to have ability to provide symmetric authentication in addition to AEAD (but I doubt it)

Option	hal or ma	andatory?			
Issues					
History 000	Interface 0000	AEAD in standards ○○●	AEAD in security architectures	Desiderata 0000	Conclusions

TLS v 1.2 example

```
struct {
    ContentType type;
    ProtocolVersion version;
    uint16 length;
    select (SecurityParameters.cipher_type) {
        case stream: GenericStreamCipher;
        case block: GenericBlockCipher;
        case aead: GenericAEADCipher;
        } fragment;
} TLSCiphertext;
```

History 000	Interface 0000	AEAD in standards ○○●	AEAD in security architectures	Desiderata 0000	Conclusions				
Issues									
Optional or mandatory?									

TLS v 1.2 example

struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 select (SecurityParameters.cipher_type) {
 case stream: GenericStreamCipher;
 case block: GenericBlockCipher;
 case aead: GenericAEADCipher;
 } fragment;
} TLSCiphertext;

Authenticated Encryption with AES-CBC and HMAC-SHA

draft-mcgrew-aead-aes-cbc-hmac-sha2-00.txt
(joint work with Kenny Paterson)

History 000	Interface 0000	AEAD in standards	AEAD in security architectures ●○○○○○○	Desiderata 0000	Conclusions
Storag	je encryp	otion			

Specialty ciphers (without authentication)

- Disk block encryption (EME2, XCB, XTS)
- Format-preserving encryption
- File and file system encryption

History 000	Interface 0000	AEAD in standards	AEAD in security architectures ●○○○○○○	Desiderata 0000	Conclusions

Storage encryption

Specialty ciphers (without authentication)

- Disk block encryption (EME2, XCB, XTS)
- Format-preserving encryption
- File and file system encryption

Needed: standard(s) for AEAD storage

- Security improvements for disk, file, filesystem
- Motivation: network/cloud separates storage from owner
- Existing AEAD algorithms suitable?

History	Interface	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
			000000		

Traditional security goals

Inside AEAD

- Confidentiality
- Authenticity

Outside AEAD

- Anti-replay protection
- Forward security
- Message length hiding
- Frequent rekeying

History	Interface	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
			000000		

Achievable security goals

Inside AEAD

- Confidentiality
- Authenticity
- Anti-replay protection
- Forward security

Outside AEAD

- Message length hiding
- Frequent rekeying

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
Security					
Forwa	rd secur	ity			

$$egin{aligned} \mathcal{C}_i &= \mathcal{E}(\mathcal{K}_i, \mathcal{P}_i, \mathcal{A}_i) \ \mathcal{K}_i &= egin{cases} \mathcal{K} & ext{if } i = 0 \ \mathsf{PRF}(\mathcal{K}_{i-1}) & ext{otherwise} \end{aligned}$$

One-way chain of per-message keys: $K_0 \rightarrow K_1 \rightarrow K_2 \rightarrow \dots$

Easy to use above reliable transport (TLS, SSH)

[BY03] Forward-Security in Private-Key Cryptography

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
Security					
Side c	hannel a	Ittacks			

Attacker can touch device

- Cryptographic tamper resistance
- Needed to build trustworthy systems

Attacker can run co-resident software

- Virtual machine or process
- Applicable in cloud computing

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions				
Security									
Multip	Multiple Forgery Attacks [MF05]								

- E(F) = expected number of forgeries
 - q = number of queries $\ll 2^t/I, \ll 2^{b/2}$
 - b = bits in block
 - I = blocks in message
 - t = bits in tag

$$egin{aligned} & E(F_{ ext{Ideal}}) pprox q \, 2^{-t} \ & E(F_{ ext{GCM}}) pprox q^2 \, rac{l+1}{2} 2^{-t} \ & E(F_{ ext{Chained}}) pprox q^3 \, rac{1}{6} 2^{-b} \end{aligned}$$

History 000	Interface 0000	AEAD in standards	AEAD in security architectures ○○○○○○●	Desiderata 0000	Conclusions				
Security									
Multip	Multiple Forgery Attacks [MF05]								

l = 128, *t* = 128

 $E(F_{\text{Ideal}}) pprox q 2^{-128}$ $E(F_{\text{AES-GCM}}) pprox q^2 2^{-122}$ $E(F_{\text{AES-CMAC}}) pprox q^3 2^{-125}$ $E(F_{\text{HMAC-MD5}}) pprox q^3 2^{-125}$ $E(F_{\text{HMAC-SHA1}}) pprox q^3 2^{-157}$

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata ●000	Conclusions		
Domains of use							
		message size	data rates	goals			
	Links	40 to	0.6 to	low latency			
		2000 bytes	100 Gbit				
	Internet	40 to	1 to 10 Mbit				
		2000 bytes					

	2000 bytes		
Low power	1 to 100 bytes	20 to	low expansion
wireless		250 Kbits	compact
Data	512 to	400 Mbit	nonce?
at rest	4096 bytes		

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata ○●○○	Conclusions

AES Criteria

- Security
- Computational efficiency on a variety of software and hardware platforms, including smart cards
- Flexibility and simplicity
- Availability royalty-free worldwide
- Capability of handling key sizes of 128, 192, and 256 bits

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions
Desiderata					
Non-se	ecurity				

- Computationally cheap
- Low latency
- Compact in software and/or hardware
- Re-use existing cryptographic components
- Avoid deterministic nonce
- Key agility

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata ○○○●	Conclusions
Desiderata					
Securi	ty				

- Strength against cryptanalysis
- Side channel resistance
- Misuse resistance
- Message length hiding
- Forward security
- Postquantum
- Beyond birthday bound security

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Concl	usions				

• Encourage exploration of design space

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Conclu	usions				

- Encourage exploration of design space
- Identify new domains of use

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Conclu	Isions				

- Encourage exploration of design space
- Identify new domains of use
 - Low power wireless

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Conclu	usions				

- Encourage exploration of design space
- Identify new domains of use
 - Low power wireless
- Document requirements within each domain

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Conclu	usions				

- Encourage exploration of design space
- Identify new domains of use
 - Low power wireless
- Document requirements within each domain
- Identify critical requirements

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Concl	usions				

- Encourage exploration of design space
- Identify new domains of use
 - Low power wireless
- Document requirements within each domain
- Identify critical requirements
 - Side channel resistance

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Concl	usions				

- Encourage exploration of design space
- Identify new domains of use
 - Low power wireless
- Document requirements within each domain
- Identify critical requirements
 - Side channel resistance
 - Available royalty-free worldwide

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Conclu	usions				

- Encourage exploration of design space
- Identify new domains of use
 - Low power wireless
- Document requirements within each domain
- Identify critical requirements
 - Side channel resistance
 - Available royalty-free worldwide
- Avoid over focus on performance, compactness, ...

History 000	Interface 0000	AEAD in standards	AEAD in security architectures	Desiderata 0000	Conclusions ●○
Concl	usions				

- Encourage exploration of design space
- Identify new domains of use
 - Low power wireless
- Document requirements within each domain
- Identify critical requirements
 - Side channel resistance
 - Available royalty-free worldwide
- Avoid over focus on performance, compactness, ...
- Support advanced security goals

History	Interface	AEAD in standards	AEAD in security architectures	Desiderata	Conclusions
000	0000	000	0000000	0000	00

Thank You

mcgrew@cisco.com

